搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔SiO2包裹磁性纳米颗粒Fe3O4的制备与表征

雷洁梅 吕柳 刘玲 许小亮

引用本文:
Citation:

多孔SiO2包裹磁性纳米颗粒Fe3O4的制备与表征

雷洁梅, 吕柳, 刘玲, 许小亮

Preparation and characterization of magnetic nanoparticles of Fe3O4 coated with mesoporous SiO2

Lei Jie-Mei, Lü Liu, Liu Ling, Xu Xiao-Liang
PDF
导出引用
  • 采用加热分解油酸铁法制备了Fe3O4磁性纳米颗粒,并用有机模板和反相微乳液相结合的方法将磁性纳米颗粒包裹在多孔二氧化硅中.用红外光谱(FTIR)研究了不同的处理方式对油酸铁表面官能团的影响及油酸的反应浓度和加热分解油酸铁的过程中升温速率对Fe3O4纳米颗粒的影响.结果表明,用乙醇和丙酮处理后的固态蜡状油酸铁表面的油酸基团会受到损害,将不利于加热分解时形成单分散性的Fe3O4纳
    We prepared the magnetic nanoparticles of Fe3O4from thermal decomposition of the Fe oleates precursors synthesized by iron chlorides and sodium oleate,and the SiO2-coated Fe3O4nanoparticles by combining the reverse microemulsion and organic template methods. FTIR was adopted to investigate the surface of Fe oleate under different treatments,and the growth of Fe3O4 nanoparticles with different reactant concentrations of oleic acid and heating rates. The results indicated that the superficial oleic acid of the waxy solid Fe oleates after extraction from ethanol and acetone was partially removed,which impairs the formation of monodispersion Fe3O4 naoparticles. The effect of heating rate on the growth of nanoparticles was weak compared with that of the concentration of Fe oleates. When the concentration of oleic acid is 0.09 mol/L, a characteristic peak of Fe3O4 at 576 cm-1(assignable to the bending vibrations of Fe-O) is enhanced significantly. The XRD (X-ray diffraction) spectra,TEM (transmission electron microscopy) images and SQUID (superconducting quantum interference device) confirmed that the Fe3O4 nanoparticles are spinel cubic crystal and have a good monodispersity and super-paramagnetism. Whats more,the TEM of SiO2-coated Fe3O4 nanoparticles also confirmed that the Fe3O4 nanoparticles were well coated by mesoporous SiO2.
    • 基金项目: 国家自然科学基金(批准号: 50872129)和国家重点基础研究发展计划(973)(批准号: 2006CB302900)资助的课题.
    [1]

    Yu D L, Du Y W 2005 Acta Phys. Sin. 54 930 (in Chinese) [于冬亮、 都有为 2005 50 2775]

    [2]

    Meldrum F C, Heywood B R, Mann S 1992 Science 257 522

    [3]

    52 3130 (in Chinese) [何志巍、 甄聪棉、 兰 伟、 王印月 2003 52 3130]

    [4]

    Yang J H, Ma S C, Xu Y 2008 Chin. Phys. B 17 1674

    [5]

    Wang J Z, Fang Q Q 2004 Acta Phys. Sin. 53 3186 (in Chinese) [汪金芝、 方庆清 2004 53 3186]

    [6]

    Ao Q, Zhang W L 2007 Acta Phys. Sin. 56 1135 (in Chinese) [敖 琪、 张瓦利 2007 56 1135]

    [7]

    Zhang H, Liu X 2009 Acta Phys. Sin. 58 4970 (in Chinese) [张 弘、 刘 曦 2009 58 4970]

    [8]

    Jaiswal J K, Mattoussi H, Matthew Mauro J, Simon S M 2003 Nat. Biotechnol. 21 47

    [9]

    Sun S, Murray C B, Weller D, Folks L, Moser A 2000 Science 287 1989

    [10]

    Harisinghani M G, Barentsz J, Hahn P F 2003 Engl. J. Med. 348 2491

    [11]

    Jordan A,Scholz R,Wust P 1999 J. Magn. Magn. Mater. 194 185

    [12]

    Souza K C, Mohallem N D S, Sousa E M B 2010 J. Sol-Gel. Sci. Technol. 53 418

    [13]

    Kim J, Lee J E, Lee J 2006 J. Am. Chem. Soc. 128 688

    [14]

    He Z W, Zhen C M, Lan W, Wang Y Y 2003 Acta Phys. Sin.

    [15]

    Li S F, Wang T, Wang Y 2005 Acta Phys. Sin. 54 3100 (in Chinese) [李发伸、王 涛、王 颖 2005 54 3100]

    [16]

    López-Quintela M A, Rivas J 1993 J. Colloid Interface Sci. 158 446

    [17]

    Xu J, Yang H B, Fu W Y 2007 J. Magn. Magn. Mater. 309 307

    [18]

    Park J, An K, Hwang Y 2004 Nat. Mater. 3 891

    [19]

    Lu Y, Yin Y D, Mayers B T, Xia Y N 2002 Nano Lett. 2 183

    [20]

    Yi D K, Selvan T, Lee S S 2005 J. Am. Chem. Soc. 127 4990

    [21]

    Bronstein L M, Huang X L, Retrum J 2007 Chem. Mater. 19 3624

    [22]

    Lin C L, Lee C F, Chiu W Y 2005 J. Colloid Interface Sci. 291 411

    [23]

    Sederlind F, Pedersen H 2005 J. Colloid Interface Sci. 288 140

    [24]

    Zhang L, He R, Gu H C 2006 App. Surf. Sci. 253 2611

    [25]

    Tao K, Dou H J, Sun K 2006 Chem. Mater. 18 5273

    [26]

    Waldron R D 1955 Phys. Rev. 99 1727

    [27]

    Wu H X, Wang T J, Jin Y 2007 Ind. Eng. Chem. Res. 46 761

    [28]

    Boutonnet M, Kizling J, Stenius P, Maire G 1982 Colloids Surf. 5 209

  • [1]

    Yu D L, Du Y W 2005 Acta Phys. Sin. 54 930 (in Chinese) [于冬亮、 都有为 2005 50 2775]

    [2]

    Meldrum F C, Heywood B R, Mann S 1992 Science 257 522

    [3]

    52 3130 (in Chinese) [何志巍、 甄聪棉、 兰 伟、 王印月 2003 52 3130]

    [4]

    Yang J H, Ma S C, Xu Y 2008 Chin. Phys. B 17 1674

    [5]

    Wang J Z, Fang Q Q 2004 Acta Phys. Sin. 53 3186 (in Chinese) [汪金芝、 方庆清 2004 53 3186]

    [6]

    Ao Q, Zhang W L 2007 Acta Phys. Sin. 56 1135 (in Chinese) [敖 琪、 张瓦利 2007 56 1135]

    [7]

    Zhang H, Liu X 2009 Acta Phys. Sin. 58 4970 (in Chinese) [张 弘、 刘 曦 2009 58 4970]

    [8]

    Jaiswal J K, Mattoussi H, Matthew Mauro J, Simon S M 2003 Nat. Biotechnol. 21 47

    [9]

    Sun S, Murray C B, Weller D, Folks L, Moser A 2000 Science 287 1989

    [10]

    Harisinghani M G, Barentsz J, Hahn P F 2003 Engl. J. Med. 348 2491

    [11]

    Jordan A,Scholz R,Wust P 1999 J. Magn. Magn. Mater. 194 185

    [12]

    Souza K C, Mohallem N D S, Sousa E M B 2010 J. Sol-Gel. Sci. Technol. 53 418

    [13]

    Kim J, Lee J E, Lee J 2006 J. Am. Chem. Soc. 128 688

    [14]

    He Z W, Zhen C M, Lan W, Wang Y Y 2003 Acta Phys. Sin.

    [15]

    Li S F, Wang T, Wang Y 2005 Acta Phys. Sin. 54 3100 (in Chinese) [李发伸、王 涛、王 颖 2005 54 3100]

    [16]

    López-Quintela M A, Rivas J 1993 J. Colloid Interface Sci. 158 446

    [17]

    Xu J, Yang H B, Fu W Y 2007 J. Magn. Magn. Mater. 309 307

    [18]

    Park J, An K, Hwang Y 2004 Nat. Mater. 3 891

    [19]

    Lu Y, Yin Y D, Mayers B T, Xia Y N 2002 Nano Lett. 2 183

    [20]

    Yi D K, Selvan T, Lee S S 2005 J. Am. Chem. Soc. 127 4990

    [21]

    Bronstein L M, Huang X L, Retrum J 2007 Chem. Mater. 19 3624

    [22]

    Lin C L, Lee C F, Chiu W Y 2005 J. Colloid Interface Sci. 291 411

    [23]

    Sederlind F, Pedersen H 2005 J. Colloid Interface Sci. 288 140

    [24]

    Zhang L, He R, Gu H C 2006 App. Surf. Sci. 253 2611

    [25]

    Tao K, Dou H J, Sun K 2006 Chem. Mater. 18 5273

    [26]

    Waldron R D 1955 Phys. Rev. 99 1727

    [27]

    Wu H X, Wang T J, Jin Y 2007 Ind. Eng. Chem. Res. 46 761

    [28]

    Boutonnet M, Kizling J, Stenius P, Maire G 1982 Colloids Surf. 5 209

  • [1] 肖忆瑶, 何佳豪, 陈南锟, 王超, 宋宁宁. 基于负载Fe3O4纳米微球的大尺寸单层二维Ti3C2Tx微波吸收性能.  , 2023, 72(21): 217501. doi: 10.7498/aps.72.20231200
    [2] 时立宇, 吴东, 王子潇, 林桐, 张思捷, 刘巧梅, 胡天晨, 董涛, 王楠林. 极性反铁磁体Fe2Mo3O8的太赫兹发射谱.  , 2020, 69(20): 204206. doi: 10.7498/aps.69.20201545
    [3] 李文宇, 霍格, 黄岩, 董丽娟, 卢学刚. 空心Fe3O4纳米微球的制备及超顺磁性.  , 2018, 67(17): 177501. doi: 10.7498/aps.67.20180579
    [4] 杨芝, 张悦, 周倩倩, 王玉华. Fe3O4单晶薄膜磁性电场调控的微磁学仿真研究.  , 2017, 66(13): 137501. doi: 10.7498/aps.66.137501
    [5] 李圣昆, 唐军, 毛宏庆, 王明焕, 陈国彬, 翟超, 张晓明, 石云波, 刘俊. Fe3O4纳米颗粒/聚二甲基硅氧烷复合材料磁电容效应的研究.  , 2014, 63(5): 057501. doi: 10.7498/aps.63.057501
    [6] 陈剑辉, 刘保亭, 赵庆勋, 崔永亮, 赵冬月, 郭哲. 含铜铁电电容器SrRuO3/Pb(Zr0.4Ti0.6)O3/SrRuO3/Ni-Al/Cu/Ni-Al/SiO2/Si异质结的研究.  , 2011, 60(11): 117701. doi: 10.7498/aps.60.117701
    [7] 臧渡洋, 张永建, Langevin Dominique. SiO2纳米颗粒单层膜流变特性的双Wilhelmy片法研究.  , 2011, 60(7): 076801. doi: 10.7498/aps.60.076801
    [8] 向军, 宋福展, 沈湘黔, 褚艳秋. 一维Ni0.5Zn0.5Fe2O4/SiO2复合纳米结构的制备及其磁性能.  , 2010, 59(7): 4794-4801. doi: 10.7498/aps.59.4794
    [9] 马保宏, 李 燕, 王成伟, 王 建, 陈建彪, 刘维民. 多孔TiO2/Al/SiO2纳米复合结构的紫外光吸收特性研究.  , 2008, 57(1): 586-591. doi: 10.7498/aps.57.586
    [10] 牛二武, 阎殿然, 何继宁, 董艳春, 李香芝, 冯文然, 张建新, 张古令, 杨思泽. SHS等离子喷涂制备FeAl2O4-Al2O3-Fe纳米复合涂层的研究.  , 2006, 55(10): 5535-5538. doi: 10.7498/aps.55.5535
    [11] 缑 洁, 何志巍, 潘国辉, 王印月. 用SCLC法研究低k多孔SiO2:F薄膜的隙态密度.  , 2006, 55(6): 2936-2940. doi: 10.7498/aps.55.2936
    [12] 李发伸, 王 涛, 王 颖. H2O2氧化法制备Fe3O4纳米颗粒及与共沉淀法制备该样品的比较.  , 2005, 54(7): 3100-3105. doi: 10.7498/aps.54.3100
    [13] 何志巍, 甄聪棉, 兰 伟, 王印月. 溶胶-凝胶法制备纳米多孔SiO2薄膜.  , 2003, 52(12): 3130-3134. doi: 10.7498/aps.52.3130
    [14] 梁海春, 容敏智, 章明秋, 曾汉民. 微乳液法制备纳米银粒子的结构及其荧光现象研究.  , 2002, 51(1): 49-54. doi: 10.7498/aps.51.49
    [15] 都有为, 陈鹏, 朱建民, 邢定钰. 纳米结构ZnxFe3-xO4-α-Fe2O3多晶材料中的巨隧道磁电阻效应.  , 2001, 50(11): 2275-2277. doi: 10.7498/aps.50.2275
    [16] 吴广明, 王珏, 沈军, 杨天河, 张勤远, 周斌, 邓忠生, 范滨, 周东平, 张凤山. 实验条件对纳米多孔SiO2薄膜结构及特性的影响.  , 2001, 50(1): 175-181. doi: 10.7498/aps.50.175
    [17] 张海燕, 何艳阳, 薛新民, 梁礼正. 碳弧法中形成的碳包铁及其化合物纳米晶.  , 2000, 49(2): 361-364. doi: 10.7498/aps.49.361
    [18] 陆怀先, 都有为, 王挺祥, 张毓昌. 有机物包裹的Fe3O4颗粒表面自旋钉扎效应研究.  , 1985, 34(1): 121-125. doi: 10.7498/aps.34.121
    [19] 李士, 邵涵如, 罗河烈, 凌启芬, 孙克. 超细颗粒γ-Fe2O3微粉包钴前后的各向异性.  , 1982, 31(9): 1250-1255. doi: 10.7498/aps.31.1250
    [20] 都有为, 张毓昌, 陆怀先. 超细Fe3O4的氧化过程.  , 1981, 30(3): 424-427. doi: 10.7498/aps.30.424
计量
  • 文章访问数:  10341
  • PDF下载量:  1184
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-06
  • 修回日期:  2010-05-03
  • 刊出日期:  2011-01-15

/

返回文章
返回
Baidu
map