搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图形化蓝宝石衬底上有序微米半球形SnO2的生长、结构和光学特性研究

冯秋菊 潘德柱 邢研 石笑驰 杨毓琪 李芳 李彤彤 郭慧颖 梁红伟

引用本文:
Citation:

图形化蓝宝石衬底上有序微米半球形SnO2的生长、结构和光学特性研究

冯秋菊, 潘德柱, 邢研, 石笑驰, 杨毓琪, 李芳, 李彤彤, 郭慧颖, 梁红伟

Growth, structural and optical properties of orderly SnO2 microhemispheres on patterned sapphire substrates

Feng Qiu-Ju, Pan De-Zhu, Xing Yan, Shi Xiao-Chi, Yang Yu-Qi, Li Fang, Li Tong-Tong, Guo Hui-Ying, Liang Hong-Wei
PDF
导出引用
  • 利用化学气相沉积法,在图形化蓝宝石衬底上,无需引入催化剂,通过改变反应源锡粉量生长出了不同尺寸、规则排列的有序微米半球形SnO2.测试结果表明,微米半球形SnO2呈选择性生长特性,并且随着反应源锡粉量的增加,微米半球的直径逐渐增大,结晶质量变差.此外,随着锡粉量的增加,在吸收谱中还观测到了吸收边的红移现象.这种选用图形化衬底的制备方法为制备高密度、有序排列的SnO2微/纳米结构提供了一种可行和有效的方法.
    One-dimensional nanoscaled materials, such as nanotubes, nanowires and nanobelts, have attracted a great deal of attention in recent years because of their unique electronic, optical, and mechanical properties. Their potential applications are found in next generation devices, functional materials, and sensors. A material of particular interest is stannic oxide (SnO2), which is a novel oxide semiconductor material for ultraviolet and blue luminescence devices due to its wide band gap of 3.6 eV at room temperature. SnO2 can also be widely used in many fields, such as gas sensors, optoelectronic devices, and transparent conductive glass, because of its high optical transparency in the visible range, low resistivity, and higher chemical and physical stability. In recent years, one-dimensional nanostructures of SnO2 materials, such as nanobelts, nanotubes, and nanowires, have been reported. However, the preparations of orderly SnO2 micro/nanostructures have been rarely reported. In this paper, orderly SnO2 microhemispheres with different sizes are grown on patterned sapphire substrates by a traditional chemical vapor deposition method without using any catalyst. The patterned sapphire substrates are cleaned by using a standard sapphire wafer cleaning procedure. High-purity metallic Sn powders (99.99%) and oxygen gas are used as Sn and oxygen sources, respectively. The flow rate of high-purity Ar carrier gas is controlled at 200 sccm, and the oxygen reactant gas with a flow rate of 100 sccm is introduced into the system. In the growth process, the whole system is kept at 1000℃ for 30 min. The surface morphologies, structural and optical properties of the SnO2 microhemispheres are investigated by the field emission scanning electron microscope (HITACHI S4800), the X-ray diffraction with a Cu Kup radiation (0.15418 nm), the optical absorption spectroscope (UV-3600 UV-VIS-NIR, Shimadzu), and the photoluminescence spectroscope with an excitation source of He-Cd laser (=325 nm) to identify the As related acceptor emission, respectively. These results show that the diameters of SnO2 microhemispheres become larger, and the crystal quality is degraded with the increase of Sn powder mass. The special selective growth of SnO2 microhemisphere on a patterned sapphire substrate is found. In addition, we also find that the optical band gaps of the samples A-D are all redshifted with the increase of Sn powder mass. The shrinkage of Eg in the absorption spectrum should be partly attributed to the degradation of crystal quality because of excess Sn sources. This growth method of SnO2 microhemisphere provides a feasible and effective way of preparing the high density, orderly arrangement of SnO2 micro/nanostructures.
      通信作者: 冯秋菊, qjfeng@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11405017,61574026)和辽宁省自然科学基金(批准号:201602453,2014020004)资助的课题.
      Corresponding author: Feng Qiu-Ju, qjfeng@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11405017, 61574026) and the Liaoning Provincial Natural Science Foundation of China (Grant Nos. 201602453, 2014020004).
    [1]

    Wang Y H, Ma J, Ji F, Yu X H, Zhang X J, Ma H L 2005 Acta Phys. Sin. 54 1731 (in Chinese)[王玉恒, 马瑾, 计峰, 余旭浒, 张锡健, 马洪磊2005 54 1731]

    [2]

    Ji Z G, He Z J, Song Y L 2004 Acta Phys. Sin. 53 4330 (in Chinese)[季振国, 何振杰, 宋永梁2004 53 4330]

    [3]

    Sun J W, Lu Y M, Liu Y C, Shen D Z, Zhang Z Z, Li B H, Zhang J Y, Yao B, Zhao D X, Fan X W 2006 Solid State Commun. 140 345

    [4]

    Feng Q J, Liu Y, Pan D Z, Yang Y Q, Liu J Y, Mei Y Y, Liang H W 2015 Acta Phys. Sin. 64 248101 (in Chinese)[冯秋菊, 刘洋, 潘德柱, 杨毓琪, 刘佳媛, 梅艺赢, 梁红伟2015 64 248101]

    [5]

    Rogersa D J, Teherani F H, Yasan A, Minder K, Kung P, Razeghi M 2006 Appl. Phys. Lett. 88 141918

    [6]

    Tang X B, Li G M, Zhou S M 2013 Nano Lett. 13 5046

    [7]

    Feng Q J, Liang H W, Mei Y Y, Liu J Y, Ling C C, Tao P C, Pan D Z, Yang Y Q 2015 J. Mater. Chem. C 3 4678

    [8]

    Li P G, Lei M, Wang X, Tang W H 2009 Mater. Lett. 63 357

    [9]

    Xie X, Shao Z, Yang Q, Shen X, Zhu W, Hong X, Wang G 2012 J. Solid State Chem. 191 46

    [10]

    Tao T, Chen Q Y, Hu H P, Chen Y 2011 Mater. Chem. Phys. 126 128

    [11]

    Zhong W W, Liu F M, Cai L G, Zhou C C, Ding P, Zhang H 2010 J. Alloys Compd. 499 265

    [12]

    Zhao J, Liang H, Sun J, Feng Q, Li S, Bian J, Hu L, Du G, Ren J, Liu J 2011 Phys. Status Solidi A 208 825

    [13]

    Luo S, Fan J, Liu W, Zhang M, Song Z, Lin C, Wu X, Chu P K 2006 Nanotechnology 17 1695

    [14]

    Kar A, Stroscio M A, Dutta M, Kumari J, Meyyappan M 2009 Appl. Phys. Lett. 94 101905

    [15]

    Chen H T, Xiong S J, Wu X L Zhu J, Shen J C, Chu P K 2009 Nano Lett. 9 1926

  • [1]

    Wang Y H, Ma J, Ji F, Yu X H, Zhang X J, Ma H L 2005 Acta Phys. Sin. 54 1731 (in Chinese)[王玉恒, 马瑾, 计峰, 余旭浒, 张锡健, 马洪磊2005 54 1731]

    [2]

    Ji Z G, He Z J, Song Y L 2004 Acta Phys. Sin. 53 4330 (in Chinese)[季振国, 何振杰, 宋永梁2004 53 4330]

    [3]

    Sun J W, Lu Y M, Liu Y C, Shen D Z, Zhang Z Z, Li B H, Zhang J Y, Yao B, Zhao D X, Fan X W 2006 Solid State Commun. 140 345

    [4]

    Feng Q J, Liu Y, Pan D Z, Yang Y Q, Liu J Y, Mei Y Y, Liang H W 2015 Acta Phys. Sin. 64 248101 (in Chinese)[冯秋菊, 刘洋, 潘德柱, 杨毓琪, 刘佳媛, 梅艺赢, 梁红伟2015 64 248101]

    [5]

    Rogersa D J, Teherani F H, Yasan A, Minder K, Kung P, Razeghi M 2006 Appl. Phys. Lett. 88 141918

    [6]

    Tang X B, Li G M, Zhou S M 2013 Nano Lett. 13 5046

    [7]

    Feng Q J, Liang H W, Mei Y Y, Liu J Y, Ling C C, Tao P C, Pan D Z, Yang Y Q 2015 J. Mater. Chem. C 3 4678

    [8]

    Li P G, Lei M, Wang X, Tang W H 2009 Mater. Lett. 63 357

    [9]

    Xie X, Shao Z, Yang Q, Shen X, Zhu W, Hong X, Wang G 2012 J. Solid State Chem. 191 46

    [10]

    Tao T, Chen Q Y, Hu H P, Chen Y 2011 Mater. Chem. Phys. 126 128

    [11]

    Zhong W W, Liu F M, Cai L G, Zhou C C, Ding P, Zhang H 2010 J. Alloys Compd. 499 265

    [12]

    Zhao J, Liang H, Sun J, Feng Q, Li S, Bian J, Hu L, Du G, Ren J, Liu J 2011 Phys. Status Solidi A 208 825

    [13]

    Luo S, Fan J, Liu W, Zhang M, Song Z, Lin C, Wu X, Chu P K 2006 Nanotechnology 17 1695

    [14]

    Kar A, Stroscio M A, Dutta M, Kumari J, Meyyappan M 2009 Appl. Phys. Lett. 94 101905

    [15]

    Chen H T, Xiong S J, Wu X L Zhu J, Shen J C, Chu P K 2009 Nano Lett. 9 1926

  • [1] 费翔, 张秀梅, 付泉桂, 蔡正阳, 南海燕, 顾晓峰, 肖少庆. 基于熔融玻璃的预沉积法生长毫米级单晶MoS2及WS2-MoS2异质结.  , 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [2] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究.  , 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [3] 冯秋菊, 石博, 李昀铮, 王德煜, 高冲, 董增杰, 解金珠, 梁红伟. 单根Sb掺杂ZnO微米线非平衡电桥式气敏传感器的制作与性能.  , 2020, 69(3): 038102. doi: 10.7498/aps.69.20191530
    [4] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移.  , 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [5] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究.  , 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [6] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析.  , 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [7] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀.  , 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [8] 马立安, 郑永安, 魏朝晖, 胡利勤, 郭太良. 合成温度和N2/O2流量比对碳纤维衬底上生长的SnO2纳米线形貌及场发射性能影响.  , 2015, 64(23): 237901. doi: 10.7498/aps.64.237901
    [9] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响.  , 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [10] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究.  , 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [11] 王文荣, 周玉修, 李铁, 王跃林, 谢晓明. 高质量大面积石墨烯的化学气相沉积制备方法研究.  , 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
    [12] 贾曦, 刘爱萍, 刘洋溢, 唐为华, 王君伟. SnO2微纳米材料的合成及其生长机理研究.  , 2009, 58(4): 2572-2577. doi: 10.7498/aps.58.2572
    [13] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长.  , 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [14] 曾春来, 唐东升, 刘星辉, 海 阔, 羊 亿, 袁华军, 解思深. 化学气相沉积法中SnO2一维纳米结构的控制生长.  , 2007, 56(11): 6531-6536. doi: 10.7498/aps.56.6531
    [15] 丁才蓉, 王 冰, 杨国伟, 汪河洲. 催化剂对热蒸发法生长SnO2纳米晶体质量的影响及其发光光谱研究.  , 2007, 56(3): 1775-1778. doi: 10.7498/aps.56.1775
    [16] 杜 娟, 季振国. Ⅲ族元素掺杂对SnO2电子结构及电学性能的影响.  , 2007, 56(4): 2388-2392. doi: 10.7498/aps.56.2388
    [17] 徐 剑, 黄水平, 王占山, 鲁大学, 苑同锁. F掺杂SnO2电子结构的模拟计算.  , 2007, 56(12): 7195-7200. doi: 10.7498/aps.56.7195
    [18] 季振国, 何振杰, 宋永梁. p型导电掺In的SnO2薄膜的制备及表征.  , 2004, 53(12): 4330-4333. doi: 10.7498/aps.53.4330
    [19] 闫小琴, 刘祖琴, 唐东升, 慈立杰, 刘东方, 周振平, 梁迎新, 袁华军, 周维亚, 王 刚. 衬底对化学气相沉积法制备氧化硅纳米线的影响.  , 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [20] 闫桂沈, 李贺军, 郝志彪. 热解碳化学气相沉积中的多重定态和非平衡相变的研究.  , 2002, 51(2): 326-331. doi: 10.7498/aps.51.326
计量
  • 文章访问数:  6148
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-16
  • 修回日期:  2016-09-02
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map