Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of surface plasmons mediated photothermal effects

Wang Shan-Jiang Su Dan Zhang Tong

Citation:

Research progress of surface plasmons mediated photothermal effects

Wang Shan-Jiang, Su Dan, Zhang Tong
PDF
HTML
Get Citation
  • Plasmonic nanostructure can efficiently manipulate light on a subwavelength scale, which can break through the optical diffraction limit and significantly enhance the interaction between light and matter. In the study of photoelectric devices based on the plasmonic mechanism, the absorption of light in surface plasmons is usually considered as loss, which needs to be suppressed. However, based on the photothermal effect, the light absorption of plasmonic nanostructure can be effectively utilized and converted into heat. The research of this new type of nano-heat source is a hot topic in the field of plasmonics. In this paper, we review the recent progress of the study of photothermal effects of plasmonic nanostructure, focusing on the physical process of heating effects, and the methods to control the temperature distribution in both the process of heat generation and the process of delivery of heat. Finally, the applications of nano-heat source in the fields of nano-fabrication and broad-spectrum photothermal conversion are also presented.
      Corresponding author: Zhang Tong, tzhang@seu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0205800) and the National Natural Science Foundation of China (Grant Nos. 61875241, 11734005).
    [1]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403Google Scholar

    [2]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508Google Scholar

    [3]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629Google Scholar

    [4]

    Lal S, Link S, Halas N J 2007 Nat. Photon. 1 641Google Scholar

    [5]

    Tong L, Wei H, Zhang S, Xu H X 2014 Sensors 14 7959Google Scholar

    [6]

    Pan D, Wei H, Gao L, Xu H X 2016 Phys. Rev. Lett. 117 166803Google Scholar

    [7]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [8]

    High A A, Devlin R C, Dibos A, Polking M, Wild D S, Perczel J, de Leon N P, Lukin M D, Park H 2015 Nature 522 192Google Scholar

    [9]

    Su D, Zhang X Y, Ma Y L, Shan F, Wu J Y, Fu X C, Zhang L J, Yuan K Q, Zhang T 2018 IEEE Photon. J. 10 1

    [10]

    Maier S A, Brongersma M L, Kik P G, Meltzer S, Requich A A G, Atwater H A 2001 Adv. Mater. 13 1501Google Scholar

    [11]

    Maier S A 2006 IEEE J. Sel. Top. Quant. 12 1214Google Scholar

    [12]

    Zhang T, Su D, Li R Z, Wang S J, Shan F, Xu J J, Zhang X Y 2016 J. Photon. Energy 6 042504Google Scholar

    [13]

    Govorov A O, Richardson H H 2007 Nano Today 2 30

    [14]

    Baffou G, Quidant R 2013 Laser Photon. Rev. 7 171Google Scholar

    [15]

    Boriskina S V, Cooper T A, Zeng L, Ni G, Tong J K, Tsurimaki Y, Huang Y, Meroueh L, Mahan G, Chen G 2017 Adv. Opt. Photon. 9 775Google Scholar

    [16]

    Hogan N J, Urban A S, Ayala-Orozco C, Pimpinelli A, Nordlander P, Halas N J 2014 Nano Lett. 14 4640Google Scholar

    [17]

    Roxworthy B J, Bhuiya A M, Vanka S P, Toussaint Jr K C 2014 Nat. Commun. 5 3173Google Scholar

    [18]

    Donner J S, Baffou G, McCloskey D, Quidant R 2011 ACS Nano 5 5457Google Scholar

    [19]

    Zoric I, Zach M, Kasemo B, Langhammer C 2011 ACS Nano 5 2535Google Scholar

    [20]

    Baffou G, Quidant R, Girard C 2009 Appl. Phys. Lett. 94 153109Google Scholar

    [21]

    Chen X, Chen Y, Yan M, Qiu M 2012 ACS Nano 6 2550Google Scholar

    [22]

    Brongersma M L, Halas N J, Nordlander P 2015 Nat. Nanotech. 10 25Google Scholar

    [23]

    O’Brien K, Lanzillotti-Kimura N D, Rho J, Suchowski H, Yin X, Zhang X 2014 Nat. Commun. 5 4042Google Scholar

    [24]

    潘美妍, 李强, 仇旻 2016 物理 45 379Google Scholar

    Pan M Y, Li Q, Qiu M 2016 Physics 45 379Google Scholar

    [25]

    单杭永, 祖帅, 方哲宇 2017 激光与光电子学进展 54 030002

    Shan H Y, Zu S, Fang Z Y 2017 Laser & Optoelectronics Progress 54 030002

    [26]

    Bell A P, Fairfield J A, McCarthy E K, Mills S, Boland J J, Baffou G, McCloskey D 2015 ACS Nano 9 5551Google Scholar

    [27]

    Sanchot A, Baffou G, Marty R, Arbouet A, Quidant R, Girard C, Dujardin E 2012 ACS Nano 6 3434Google Scholar

    [28]

    Baffou G, Berto P, Bermúdez Ureña E, Quidant R, Monneret S, Polleux J, Rigneault H 2013 ACS Nano 7 6478Google Scholar

    [29]

    Liu H B, Ascencio J A, Perez-Alvarez M, Yacaman M J 2001 Surf. Sci. 491 88Google Scholar

    [30]

    Baffou G, Girard C, Quidant R 2010 Phys. Rev. Lett. 104 136805Google Scholar

    [31]

    Baffou G, Quidant R, García de Abajo F J 2010 ACS Nano 4 709Google Scholar

    [32]

    Li R Z, Hu A, Bridges D, Zhang T, Oake K D, Peng R, Tumuluri U, Wu Z, Feng Z 2015 Nanoscale 7 7368Google Scholar

    [33]

    Khosravi Khorashad L, Besteiro L V, Wang Z, Valentin J, Govorov A O 2016 J. Phys. Chem. C 120 13215Google Scholar

    [34]

    Liu Z, Li Q, Zhang W, Yang Y, Qiu M 2015 Plasmonics 10 911Google Scholar

    [35]

    Metwally K, Mensah S, Baffou G 2017 ACS Photon. 4 1544Google Scholar

    [36]

    Chen H, Shao L, Li Q, Wang J F 2013 Chem. Soc. Rev. 42 2679Google Scholar

    [37]

    Ma H, Tian P, Pello J, Bendix P M, Oddershede L B 2014 Nano Lett. 14 612Google Scholar

    [38]

    Boulais E, Lachaine R, Hatef A, Meunier M 2013 J. Photoch. Photobio. C: Photochem. Rev. 17 26Google Scholar

    [39]

    Peng P, Hu A, Gerlich A P, Zou G, Liu L, Zhou Y N 2015 ACS Appl. Mater. Inter. 7 12597Google Scholar

    [40]

    González-Rubio G, Guerrero-Martínez A, Liz-Marzán L M 2016 Accounts Chem. Res. 49 678Google Scholar

    [41]

    Catone D, Ciavardini A, Di Mario L, Paladini A, Toschi F, Cartoni A, Fratoddi I, Venditti I, Alabastri A, Proietti Zaccaria R, O’Keeffe P 2018 J. Phys. Chem. Lett. 9 5002Google Scholar

    [42]

    Schoenlein R W, Lin W Z, Fujimoto J G, Eesley G L 1987 Phys. Rev. Lett. 58 1680Google Scholar

    [43]

    Hu A, Rybachuk M, Lu Q B, Duley W W 2007 Appl. Phys. Lett. 91 131906Google Scholar

    [44]

    Xing S, Lin L, Zou G, Liu L, Peng P, Wu A, Duley W W, Zhou Y N 2017 Nanotechnology 28 405302Google Scholar

    [45]

    Li R Z, Peng R, Kihm K D, Bai S, Bridges D, Tumuluri U, Wu Z, Zhang T, Compagnini G, Feng Z, Hu A 2016 Energy Environ. Sci. 9 1458Google Scholar

    [46]

    Lim D K, Barhoumi A, Wylie R G, Reznor G, Langer R S, Kohane D S 2013 Nano Lett. 13 4075Google Scholar

    [47]

    Zolotavin P, Alabastri A, Nordlander P, Natelson D 2016 ACS Nano 10 6972Google Scholar

    [48]

    Herzog J B, Knight M W, Natelson D 2014 Nano Lett. 14 499Google Scholar

    [49]

    Meng L, Yu R, Qiu M, García de Abajo F J 2017 ACS Nano 11 7915Google Scholar

    [50]

    Garnett E C, Cai W, Cha J J, Mahmood F, Conno S T, Christoforo M G, Cui Y, McGehee1 M D, Brongersma M L 2012 Nat. Mater. 11 241Google Scholar

    [51]

    Hu A, Guo J Y, Alarifi H, Patane G, Zhou Y, Compagnini G, Xu C X 2010 Appl. Phys. Lett. 97 153117Google Scholar

    [52]

    Marzbanrad E, Hu A, Zhao B, Zhou Y 2013 J. Phys. Chem. C 117 16665Google Scholar

    [53]

    Yang C, Wong C P, Yuen M M F 2013 J. Mater. Chem. C 1 4052Google Scholar

    [54]

    Zhang X Y, Xu J J, Wu J Y, Shan F, Ma X D, Chen Y Z, Zhang T 2017 RSC Adv. 7 8Google Scholar

    [55]

    Yang H, Lu J, Ghosh P, Chen Z, Wang W, Ye H, Yu Q, Qiu M, Li Q 2018 Appl. Phys. Lett. 112 071108Google Scholar

    [56]

    Herrmann L O, Valev V K, Tserkezis C, Barnard J S, Kasera S, Scherman O A, Aizpurua J, Baumberg J J 2014 Nat. Commun. 5 4568Google Scholar

    [57]

    Li R Z, Hu A, Zhang T, Oakes K D 2014 ACS Appl. Mater. Inter. 6 21721Google Scholar

    [58]

    Fang L, Liu D, Wang Y, Li Y, Song L, Gong M, Li Y, Deng Z 2018 Nano Lett. 18 7014Google Scholar

    [59]

    González-Rubio G, Díaz-Núñez P, Rivera A, Prada A, Tardajos G, González-Izquierdo J, Bañares L, Llombart P, Macdowel L G, Palafox M A, Liz-Marzán L M, Peña-Rodríguez O, Guerrero-Martínez A 2017 Science 358 640Google Scholar

    [60]

    González-Rubio G, González-Izquierdo J, Bañares L, Tardajos G, Rivera A, Altantzis T, Bals S, Peña-Rodríguez O, Guerrero-Martínez A, Liz-Marzán L M 2015 Nano Lett. 15 8282Google Scholar

    [61]

    Eaton S M, Zhang H, Herman P R, Yoshino F, Shah L, Bovatsek J, Arai A Y 2005 Opt. Express 13 4708Google Scholar

    [62]

    Wang P 2018 Environ. Sci.: Nano 5 1078Google Scholar

    [63]

    Yang M Q, Gao M, Hong M, Ho G W 2018 Adv. Mater. 30 1802894Google Scholar

    [64]

    Gao M, Zhu L, Peh C K, Ho G W 2019 Energy Environ. Sci. 12 841Google Scholar

    [65]

    Zhang X Y, Shan F, Zhou H L, Su D, Xue X M, Wu J Y, Chen Y Z, Zhao N, Zhang T 2018 J. Mater. Chem. C 6 989Google Scholar

    [66]

    Gao M, Peh C K, Phan H T, Zhu L, Ho G W 2018 Adv. Energy Mater. 8 1800711Google Scholar

    [67]

    Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J 2016 Sci. Adv. 2 e1501227Google Scholar

    [68]

    Lin L, Peng X, Wang M, Scarabelli L, Mao Z, Liz-Marzán L M, Becker M F, Zheng Y 2016 ACS Nano 10 9659Google Scholar

    [69]

    Furube A, Hashimoto S 2017 NPG Asia Mater. 9 e454Google Scholar

    [70]

    Buscema M, Barkelid M, Zwiller V, van der Zant H S, Steele G A, Castellanos-Gomez A 2013 Nano Lett. 132 358

    [71]

    Echtermeyer T J, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C 2015 Nano Lett. 16 8

    [72]

    Zolotavin P, Evans C, Natelson D 2017 J. Phys. Chem. Lett. 8 1739Google Scholar

    [73]

    Heber A, Selmke M, Cichos F 2014 ACS Nano 8 1893Google Scholar

    [74]

    Chen X, Xia Q, Cao Y, Min Q, Zhang J, Chen Z, Chen H Y, Zhu J J 2017 Nat. Commun. 8 1498Google Scholar

    [75]

    Pellegrotti J V, Cortés E, Bordenave M D, Caldarola M, Kreuzer M P, Sanchez A D, Ojea I, Bragas A V, Stefani F D 2016 ACS Sensors 1 1351Google Scholar

    [76]

    Kamarudheen R, Castellanos G W, Kamp L P J, Clercx H J H, Baldi A 2018 ACS Nano 12 8447Google Scholar

    [77]

    Zhang X, Li X, Reish M E, Zhang D, Su N Q, Gutiérrez Y, Moreno F, Yang W, Everitt H O, Liu J 2018 Nano Lett. 18 1714Google Scholar

    [78]

    Zhou L, Swearer D F, Zhang C, Robatjazi H, Zhao H, Henderson L, Dong L, Christopher P, Carter E A, Nordlander P, Halas N J 2018 Science 362 69Google Scholar

    [79]

    Baffou G, Rigneault H, Marguet D, Jullien L 2014 Nat. Methods 11 899Google Scholar

    [80]

    Agrawal A, Singh A, Yazdi S, Singh A, Ong G K, Bustillo K, Johns R W, Ringe E, Milliron D J 2017 Nano Lett. 17 2611Google Scholar

    [81]

    Li X, Zhu J, Wei B 2016 Chem. Soc. Rev. 45 3145Google Scholar

    [82]

    Bernardi M, Mustafa J, Neaton J B, Louie S G 2015 Nat. Commun. 6 7044Google Scholar

    [83]

    Evans C I, Zolotavin P, Alabastri A, Yang J, Nordlanderet P, Natelson D 2017 Nano Lett. 17 5646Google Scholar

  • 图 1  表面等离激元弛豫产生热的过程及相应时间域 (a)−(d) 分别是表面等离激元激发(t = 0 s)、朗道阻尼(t = 1—100 fs)、热载流子弛豫(t = 100 fs—1 ps)及热耗散的过程(t = 100 ps—10 ns)[22]

    Figure 1.  Process and time scale of heat generation from SPs decaying: (a)−(d) Illustrates the process of heat generation by excitation of SPs (t = 0 s), Landau damping (t = 1–100 fs), decaying of hot carriers (t = 100 fs–1 ps), and final heat diffusion to surroundings (t = 100 ps–10 ns)[22].

    图 2  (a) 直径为40 nm金纳米球; (b) 金纳米球电场分布特性, (c) 金纳米球热源密度分布; (d)金纳米球稳态条件下的温度场分布, 其中入射光波长为525 nm

    Figure 2.  (a) The gold nanosphere with a diameter of 40 nm; (b) electromagnetic distribution of the gold nanosphere, (c) thermal density distribution of the gold nanosphere; (d) steady-state temperature field distribution of the gold nanosphere (the incident light wavelength is 525 nm).

    图 3  (a) 纳米光刻技术构建的多孔和无孔金三角板的热分布[28]; (b), (c) 金纳米球二聚体结构在不同偏振下的电磁分布和对应的热分布[29]; (d)不同激励波长下, 叠层银纳米板的热分布[30]; (e) 纳米星结构的热分布仿真结果[35]; (f), (g) 金纳米棒二聚体结构的热分布及相应的局域电场分布[28]

    Figure 3.  (a) Thermal distribution of porous and non-porous gold nanoplates constructed by e-beam lithography[28]; (b), (c) electromagnetic distribution and corresponding thermal distribution of gold nanosphere dimers under different polarizations[29]; (d) thermal distribution of the tandem silver nanoplates at different excitation wavelengths[30]; (e) simulation of thermal distribution of star-shaped nanostructure[35]; (f), (g) thermal distribution and corresponding electromagnetic distribution of gold nanorod dimers[28].

    图 4  (a), (b) 金纳米壳(棒)、金纳米壳(棒)@氧化石墨烯(GO)以及金纳米壳(棒)@还原氧化石墨烯(rGO)的红外温度像及不同辐照时间下温度提升速率[46]; (c)−(e)金@硅多层壳结构、局域电场及其温度场分布[49]

    Figure 4.  (a), (b) Infrared temperature images of gold nanoshells (nanorods), gold nanoshells (nanorods)@graphene oxide (GO), and gold nanoshells (nanorods)@reduced graphene oxide (RGO) and the temperature-rising rate under different irradiation time[46]; (c)−(e) gold@silicon multilayer shells structure and their electromagnetic distribution and temperature field distributions[49].

    图 5  (a)−(c) 飞秒激光诱导的光热微纳结构“塑形”, (a) 光谱线宽变化及(b), (c) 金纳米棒塑形后形貌基本保持不变[59]; (d)−(f) “热点”自组装机制及高分辨透射电镜成像[60]

    Figure 5.  (a)−(c) The “shaping” of the nanostructure induced by femtosecond laser, (a) the spectral line width changes and (b), (c) the morphology of the gold nanorods remained basically unchanged after shaping[59]; (d)−(f) “hot spot” self-assembly process and high-resolution transmission electron microscopy imaging[60].

    图 6  (a) 宽谱光吸收原理图; (b) 金纳米星@多孔硅复合结构的宽谱光热转换器件[66]; (c) 金纳米球/三维多孔氧化铝复合结构的宽谱光吸收器件[67]

    Figure 6.  (a) The scheme of broad-spectrum optical absorption; (b) the broad-spectrum photothermal-conversion device of gold nanostar@porous silicon composite structure[66]; (c) broad-spectrum optical absorption device with gold nanosphere/three-dimensional porous alumina composite structures[67].

    图 7  表面等离激元诱导的 (a) 光-热-力过程, (b) 光-热-电过程及(c) 光-热-光过程

    Figure 7.  SPs induced (a) photon-thermal-mechanical process, (b) photon-thermal-electrical process and (c) photon-thermal-optical process.

    Baidu
  • [1]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403Google Scholar

    [2]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508Google Scholar

    [3]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629Google Scholar

    [4]

    Lal S, Link S, Halas N J 2007 Nat. Photon. 1 641Google Scholar

    [5]

    Tong L, Wei H, Zhang S, Xu H X 2014 Sensors 14 7959Google Scholar

    [6]

    Pan D, Wei H, Gao L, Xu H X 2016 Phys. Rev. Lett. 117 166803Google Scholar

    [7]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [8]

    High A A, Devlin R C, Dibos A, Polking M, Wild D S, Perczel J, de Leon N P, Lukin M D, Park H 2015 Nature 522 192Google Scholar

    [9]

    Su D, Zhang X Y, Ma Y L, Shan F, Wu J Y, Fu X C, Zhang L J, Yuan K Q, Zhang T 2018 IEEE Photon. J. 10 1

    [10]

    Maier S A, Brongersma M L, Kik P G, Meltzer S, Requich A A G, Atwater H A 2001 Adv. Mater. 13 1501Google Scholar

    [11]

    Maier S A 2006 IEEE J. Sel. Top. Quant. 12 1214Google Scholar

    [12]

    Zhang T, Su D, Li R Z, Wang S J, Shan F, Xu J J, Zhang X Y 2016 J. Photon. Energy 6 042504Google Scholar

    [13]

    Govorov A O, Richardson H H 2007 Nano Today 2 30

    [14]

    Baffou G, Quidant R 2013 Laser Photon. Rev. 7 171Google Scholar

    [15]

    Boriskina S V, Cooper T A, Zeng L, Ni G, Tong J K, Tsurimaki Y, Huang Y, Meroueh L, Mahan G, Chen G 2017 Adv. Opt. Photon. 9 775Google Scholar

    [16]

    Hogan N J, Urban A S, Ayala-Orozco C, Pimpinelli A, Nordlander P, Halas N J 2014 Nano Lett. 14 4640Google Scholar

    [17]

    Roxworthy B J, Bhuiya A M, Vanka S P, Toussaint Jr K C 2014 Nat. Commun. 5 3173Google Scholar

    [18]

    Donner J S, Baffou G, McCloskey D, Quidant R 2011 ACS Nano 5 5457Google Scholar

    [19]

    Zoric I, Zach M, Kasemo B, Langhammer C 2011 ACS Nano 5 2535Google Scholar

    [20]

    Baffou G, Quidant R, Girard C 2009 Appl. Phys. Lett. 94 153109Google Scholar

    [21]

    Chen X, Chen Y, Yan M, Qiu M 2012 ACS Nano 6 2550Google Scholar

    [22]

    Brongersma M L, Halas N J, Nordlander P 2015 Nat. Nanotech. 10 25Google Scholar

    [23]

    O’Brien K, Lanzillotti-Kimura N D, Rho J, Suchowski H, Yin X, Zhang X 2014 Nat. Commun. 5 4042Google Scholar

    [24]

    潘美妍, 李强, 仇旻 2016 物理 45 379Google Scholar

    Pan M Y, Li Q, Qiu M 2016 Physics 45 379Google Scholar

    [25]

    单杭永, 祖帅, 方哲宇 2017 激光与光电子学进展 54 030002

    Shan H Y, Zu S, Fang Z Y 2017 Laser & Optoelectronics Progress 54 030002

    [26]

    Bell A P, Fairfield J A, McCarthy E K, Mills S, Boland J J, Baffou G, McCloskey D 2015 ACS Nano 9 5551Google Scholar

    [27]

    Sanchot A, Baffou G, Marty R, Arbouet A, Quidant R, Girard C, Dujardin E 2012 ACS Nano 6 3434Google Scholar

    [28]

    Baffou G, Berto P, Bermúdez Ureña E, Quidant R, Monneret S, Polleux J, Rigneault H 2013 ACS Nano 7 6478Google Scholar

    [29]

    Liu H B, Ascencio J A, Perez-Alvarez M, Yacaman M J 2001 Surf. Sci. 491 88Google Scholar

    [30]

    Baffou G, Girard C, Quidant R 2010 Phys. Rev. Lett. 104 136805Google Scholar

    [31]

    Baffou G, Quidant R, García de Abajo F J 2010 ACS Nano 4 709Google Scholar

    [32]

    Li R Z, Hu A, Bridges D, Zhang T, Oake K D, Peng R, Tumuluri U, Wu Z, Feng Z 2015 Nanoscale 7 7368Google Scholar

    [33]

    Khosravi Khorashad L, Besteiro L V, Wang Z, Valentin J, Govorov A O 2016 J. Phys. Chem. C 120 13215Google Scholar

    [34]

    Liu Z, Li Q, Zhang W, Yang Y, Qiu M 2015 Plasmonics 10 911Google Scholar

    [35]

    Metwally K, Mensah S, Baffou G 2017 ACS Photon. 4 1544Google Scholar

    [36]

    Chen H, Shao L, Li Q, Wang J F 2013 Chem. Soc. Rev. 42 2679Google Scholar

    [37]

    Ma H, Tian P, Pello J, Bendix P M, Oddershede L B 2014 Nano Lett. 14 612Google Scholar

    [38]

    Boulais E, Lachaine R, Hatef A, Meunier M 2013 J. Photoch. Photobio. C: Photochem. Rev. 17 26Google Scholar

    [39]

    Peng P, Hu A, Gerlich A P, Zou G, Liu L, Zhou Y N 2015 ACS Appl. Mater. Inter. 7 12597Google Scholar

    [40]

    González-Rubio G, Guerrero-Martínez A, Liz-Marzán L M 2016 Accounts Chem. Res. 49 678Google Scholar

    [41]

    Catone D, Ciavardini A, Di Mario L, Paladini A, Toschi F, Cartoni A, Fratoddi I, Venditti I, Alabastri A, Proietti Zaccaria R, O’Keeffe P 2018 J. Phys. Chem. Lett. 9 5002Google Scholar

    [42]

    Schoenlein R W, Lin W Z, Fujimoto J G, Eesley G L 1987 Phys. Rev. Lett. 58 1680Google Scholar

    [43]

    Hu A, Rybachuk M, Lu Q B, Duley W W 2007 Appl. Phys. Lett. 91 131906Google Scholar

    [44]

    Xing S, Lin L, Zou G, Liu L, Peng P, Wu A, Duley W W, Zhou Y N 2017 Nanotechnology 28 405302Google Scholar

    [45]

    Li R Z, Peng R, Kihm K D, Bai S, Bridges D, Tumuluri U, Wu Z, Zhang T, Compagnini G, Feng Z, Hu A 2016 Energy Environ. Sci. 9 1458Google Scholar

    [46]

    Lim D K, Barhoumi A, Wylie R G, Reznor G, Langer R S, Kohane D S 2013 Nano Lett. 13 4075Google Scholar

    [47]

    Zolotavin P, Alabastri A, Nordlander P, Natelson D 2016 ACS Nano 10 6972Google Scholar

    [48]

    Herzog J B, Knight M W, Natelson D 2014 Nano Lett. 14 499Google Scholar

    [49]

    Meng L, Yu R, Qiu M, García de Abajo F J 2017 ACS Nano 11 7915Google Scholar

    [50]

    Garnett E C, Cai W, Cha J J, Mahmood F, Conno S T, Christoforo M G, Cui Y, McGehee1 M D, Brongersma M L 2012 Nat. Mater. 11 241Google Scholar

    [51]

    Hu A, Guo J Y, Alarifi H, Patane G, Zhou Y, Compagnini G, Xu C X 2010 Appl. Phys. Lett. 97 153117Google Scholar

    [52]

    Marzbanrad E, Hu A, Zhao B, Zhou Y 2013 J. Phys. Chem. C 117 16665Google Scholar

    [53]

    Yang C, Wong C P, Yuen M M F 2013 J. Mater. Chem. C 1 4052Google Scholar

    [54]

    Zhang X Y, Xu J J, Wu J Y, Shan F, Ma X D, Chen Y Z, Zhang T 2017 RSC Adv. 7 8Google Scholar

    [55]

    Yang H, Lu J, Ghosh P, Chen Z, Wang W, Ye H, Yu Q, Qiu M, Li Q 2018 Appl. Phys. Lett. 112 071108Google Scholar

    [56]

    Herrmann L O, Valev V K, Tserkezis C, Barnard J S, Kasera S, Scherman O A, Aizpurua J, Baumberg J J 2014 Nat. Commun. 5 4568Google Scholar

    [57]

    Li R Z, Hu A, Zhang T, Oakes K D 2014 ACS Appl. Mater. Inter. 6 21721Google Scholar

    [58]

    Fang L, Liu D, Wang Y, Li Y, Song L, Gong M, Li Y, Deng Z 2018 Nano Lett. 18 7014Google Scholar

    [59]

    González-Rubio G, Díaz-Núñez P, Rivera A, Prada A, Tardajos G, González-Izquierdo J, Bañares L, Llombart P, Macdowel L G, Palafox M A, Liz-Marzán L M, Peña-Rodríguez O, Guerrero-Martínez A 2017 Science 358 640Google Scholar

    [60]

    González-Rubio G, González-Izquierdo J, Bañares L, Tardajos G, Rivera A, Altantzis T, Bals S, Peña-Rodríguez O, Guerrero-Martínez A, Liz-Marzán L M 2015 Nano Lett. 15 8282Google Scholar

    [61]

    Eaton S M, Zhang H, Herman P R, Yoshino F, Shah L, Bovatsek J, Arai A Y 2005 Opt. Express 13 4708Google Scholar

    [62]

    Wang P 2018 Environ. Sci.: Nano 5 1078Google Scholar

    [63]

    Yang M Q, Gao M, Hong M, Ho G W 2018 Adv. Mater. 30 1802894Google Scholar

    [64]

    Gao M, Zhu L, Peh C K, Ho G W 2019 Energy Environ. Sci. 12 841Google Scholar

    [65]

    Zhang X Y, Shan F, Zhou H L, Su D, Xue X M, Wu J Y, Chen Y Z, Zhao N, Zhang T 2018 J. Mater. Chem. C 6 989Google Scholar

    [66]

    Gao M, Peh C K, Phan H T, Zhu L, Ho G W 2018 Adv. Energy Mater. 8 1800711Google Scholar

    [67]

    Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J 2016 Sci. Adv. 2 e1501227Google Scholar

    [68]

    Lin L, Peng X, Wang M, Scarabelli L, Mao Z, Liz-Marzán L M, Becker M F, Zheng Y 2016 ACS Nano 10 9659Google Scholar

    [69]

    Furube A, Hashimoto S 2017 NPG Asia Mater. 9 e454Google Scholar

    [70]

    Buscema M, Barkelid M, Zwiller V, van der Zant H S, Steele G A, Castellanos-Gomez A 2013 Nano Lett. 132 358

    [71]

    Echtermeyer T J, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C 2015 Nano Lett. 16 8

    [72]

    Zolotavin P, Evans C, Natelson D 2017 J. Phys. Chem. Lett. 8 1739Google Scholar

    [73]

    Heber A, Selmke M, Cichos F 2014 ACS Nano 8 1893Google Scholar

    [74]

    Chen X, Xia Q, Cao Y, Min Q, Zhang J, Chen Z, Chen H Y, Zhu J J 2017 Nat. Commun. 8 1498Google Scholar

    [75]

    Pellegrotti J V, Cortés E, Bordenave M D, Caldarola M, Kreuzer M P, Sanchez A D, Ojea I, Bragas A V, Stefani F D 2016 ACS Sensors 1 1351Google Scholar

    [76]

    Kamarudheen R, Castellanos G W, Kamp L P J, Clercx H J H, Baldi A 2018 ACS Nano 12 8447Google Scholar

    [77]

    Zhang X, Li X, Reish M E, Zhang D, Su N Q, Gutiérrez Y, Moreno F, Yang W, Everitt H O, Liu J 2018 Nano Lett. 18 1714Google Scholar

    [78]

    Zhou L, Swearer D F, Zhang C, Robatjazi H, Zhao H, Henderson L, Dong L, Christopher P, Carter E A, Nordlander P, Halas N J 2018 Science 362 69Google Scholar

    [79]

    Baffou G, Rigneault H, Marguet D, Jullien L 2014 Nat. Methods 11 899Google Scholar

    [80]

    Agrawal A, Singh A, Yazdi S, Singh A, Ong G K, Bustillo K, Johns R W, Ringe E, Milliron D J 2017 Nano Lett. 17 2611Google Scholar

    [81]

    Li X, Zhu J, Wei B 2016 Chem. Soc. Rev. 45 3145Google Scholar

    [82]

    Bernardi M, Mustafa J, Neaton J B, Louie S G 2015 Nat. Commun. 6 7044Google Scholar

    [83]

    Evans C I, Zolotavin P, Alabastri A, Yang J, Nordlanderet P, Natelson D 2017 Nano Lett. 17 5646Google Scholar

  • [1] Chu Xin-Bo, Jin Zuan-Ming, Wu Xu, Li Jing-Nan, Shen Yang, Wang Ruo-Yu, Ji Bing-Yu, Li Zhang-Shun, Peng Yan. Pulsed far-infrared radiation of ferromagnetic heterojunction and its photothermal regulation. Acta Physica Sinica, 2023, 72(15): 157801. doi: 10.7498/aps.72.20230543
    [2] Yan Xiao-Hong, Niu Yi-Jie, Xu Hong-Xing, Wei Hong. Strong coupling of single plasmonic nanoparticles and nanogaps with quantum emitters. Acta Physica Sinica, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [3] Yin Yun-Qiao, Wu Hong-Wei. Magnetic mirror metasurfaces based on spoof surface plasmonic structures. Acta Physica Sinica, 2020, 69(23): 234101. doi: 10.7498/aps.69.20200514
    [4] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [5] Liu Liang, Han De-Zhuan, Shi Lei. Plasmonic band structures and its applications. Acta Physica Sinica, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [6] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [7] Wang Han-Cong, Li Zhi-Peng. Advances in surface-enhanced optical forces and optical manipulations. Acta Physica Sinica, 2019, 68(14): 144101. doi: 10.7498/aps.68.20190606
    [8] Xu Fei-Xiang, Li Xiao-Guang, Zhang Zhen-Yu. Some recent advances on quantum plasmonics. Acta Physica Sinica, 2019, 68(14): 147103. doi: 10.7498/aps.68.20190331
    [9] Zhou Li, Wang Qu-Quan. Plasmon resonance energy transfer and research progress in plasmon-enhanced photocatalysis. Acta Physica Sinica, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [10] Chen Lu, Chen Yue-Gang. Surface plasmon polaritons’ propagation controlled by metal-photorefractive material composite holographical structure. Acta Physica Sinica, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [11] Zhou Qiang, Lin Shu-Pei, Zhang Pu, Chen Xue-Wen. Quasinormal mode analysis of extremely localized optical field in body-of-revolution plasmonic structures. Acta Physica Sinica, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [12] Yu Hua-Kang, Liu Bo-Dong, Wu Wan-Ling, Li Zhi-Yuan. Surface plasmaons enhanced light-matter interactions. Acta Physica Sinica, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [13] Cheng Zi-Qiang, Shi Hai-Quan, Yu Ping, Liu Zhi-Min. Surface-enhanced Raman scattering effect of silver nanoparticles array. Acta Physica Sinica, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [14] Zhu Xue-Tao, Guo Jian-Dong. Development of novel high-resolution electron energy loss spectroscopy and related studies on surface excitations. Acta Physica Sinica, 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [15] Wang Dong, Xu Jun, Chen Yi-Hang. Broadband absorption caused by coupling of epsilon-near-zero mode with plasmon mode. Acta Physica Sinica, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [16] Chen Yu, Liu Long, Huang Zhong, Tu Lin-Lin, Zhan Peng. Great enhancement of transversal magneto-optical Kerr effect for magnetic dielectric film embedded by one-dimensional metallic grating. Acta Physica Sinica, 2016, 65(14): 147302. doi: 10.7498/aps.65.147302
    [17] Huang Zhi-Fang, Ni Ya-Xian, Sun Hua. Localized surface plasmon resonance and the size effects of magneto-optic rods. Acta Physica Sinica, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [18] Zhu Hua, Yan Zhen-Dong, Zhan Peng, Wang Zhen-Lin. Enhanced third harmonic generation by localized surface plasmon excitation. Acta Physica Sinica, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
    [19] Shen Quan-Hong, Xu Duan-Yi, Qi Guo-Sheng, Hu Heng, Liu Rong. Laser-induced thermal analysis for mask layer of transmitted-aperture type super-RENS in optical storage. Acta Physica Sinica, 2005, 54(10): 4718-4722. doi: 10.7498/aps.54.4718
    [20] Yi Yong-Xiang, Wang Guo-Ping, Long Yong-Bing, Shan Hong. Optical transmission enhancement of two-dimensional subwavelength hole arrays in metallic films. Acta Physica Sinica, 2003, 52(3): 604-608. doi: 10.7498/aps.52.604
Metrics
  • Abstract views:  19951
  • PDF Downloads:  940
  • Cited By: 0
Publishing process
  • Received Date:  01 April 2019
  • Accepted Date:  05 May 2019
  • Available Online:  01 July 2019
  • Published Online:  20 July 2019

/

返回文章
返回
Baidu
map