-
金属线栅偏振器是一种新兴的基于微纳结构的光学偏振器件, 体积小、性能高、易集成.但在紫外和可见光波段, 通过缩小线栅的特征尺寸来提高消光比的方法已经受到纳米制作工艺的限制, 因此需要新的结构来提高其偏振特性.双层金属线栅结构仅在特定波段上提高 器件的偏振特性. 在此基础上, 提出一种间距可调谐的金属线栅偏振器结构, 通过调谐两层金属线栅之间的距离来确保偏振器极高的消光比和很强的透过率. 利用VirtualLab软件的傅里叶模式方法, 计算了可调谐型金属线栅偏振的透过率和消光比. 数值仿真结果表明, 双层可调谐型金属线栅结构在整个紫外、 可见光波段极大地提高了透射光的消光比和透过率.Nanowire-grid polarizer is of a periodic sub-wave structure of metallic nanowire on the substrate, fabricated by nanoimprint technology. Different from traditional polarization prism and dichroic polarizer, the nanowire-grid polarizer has many advantages such as compact size, easy integration and high polarization performance. However, in the ultraviolet and visible regions, it is infeasible to improve the performance of single layer nanowire structure by reducing the character size of nanowire because of the bottleneck of lithographic process. The double-layer nanowire-grid structure could improve the polarization characteristics at some special wavelengths but not full-wave band of ultraviolet and visible regions. In this paper, we propose a tunable double-layer structure to enhance the extinction ratio and transmission at each wavelength by tuning the distance between two nanowire-grid polarizers through adjusting the voltage applied to PZT. To calculate the transmittance and transmission extinction ratio of tunable structure, software VirtualLab is employed and the Fourier model method is used. The numerical simulation results show that the tunable structure have a higher polarization characteristic in ultraviolet and visible regions than single layer structure and double layers structure.
-
Keywords:
- nanowire-grid polarizer /
- tunable structure /
- extinction ratio /
- PZT
[1] Ge Z, Wu S T 2008 Appl. Phys. Lett. 93 121104
[2] Yao P H, Chung C J, Wu C L, Chen C H 2012 Opt. Express 20 4819
[3] Yu X J, Kowk H S 2003 Appl. Opt. 42 6335
[4] Chuss D T, Wollack E J, Henry R 2012 Appl. Opt. 51 197
[5] Kim D 2005 Appl. Opt. 44 1366
[6] Weber T, Kasebier T, Kley E B 2011 Opt. Lett. 36 445
[7] Weber T, Fuchs H J, Schmidt H, Kely E B 2009 Proc. SPIE 7205 720504
[8] Takano K, Yokoyama H, Ichii A 2011 Opt. Lett. 36 2665
[9] Wang J J, Walters F, Liu X, Sciortino P, Deng X G 2007 Appl. Phys. Lett. 90 061104
[10] Yang Z Y, Lu Y F 2007 Opt. Express 15 9510
[11] Wang J J, Zhang W, Deng X G, Deng J D, Liu F, Sciortino P, Chen L 2005 Opt. Lett. 30 195
[12] Pelletier V, Asakawa K, Wu M 2006 Appl. Phys. Lett. 88 211114
[13] Chen L, Wang J J, Walters F 2007 Appl. Phys. Lett. 90 063111
[14] Wang Q, Zhang D W, Huang Y S, Ni Z J, Chen J B, Zhong Y W, Zhuang S L 2010 Opt. Lett. 35 1236
[15] Yang W W, Wen Y M, Li P, Bian L X 2008 Acta Phys. Sin. 57 4545 (in Chinese) [杨伟伟, 文玉梅, 李平, 卞雷祥 2008 57 4545]
-
[1] Ge Z, Wu S T 2008 Appl. Phys. Lett. 93 121104
[2] Yao P H, Chung C J, Wu C L, Chen C H 2012 Opt. Express 20 4819
[3] Yu X J, Kowk H S 2003 Appl. Opt. 42 6335
[4] Chuss D T, Wollack E J, Henry R 2012 Appl. Opt. 51 197
[5] Kim D 2005 Appl. Opt. 44 1366
[6] Weber T, Kasebier T, Kley E B 2011 Opt. Lett. 36 445
[7] Weber T, Fuchs H J, Schmidt H, Kely E B 2009 Proc. SPIE 7205 720504
[8] Takano K, Yokoyama H, Ichii A 2011 Opt. Lett. 36 2665
[9] Wang J J, Walters F, Liu X, Sciortino P, Deng X G 2007 Appl. Phys. Lett. 90 061104
[10] Yang Z Y, Lu Y F 2007 Opt. Express 15 9510
[11] Wang J J, Zhang W, Deng X G, Deng J D, Liu F, Sciortino P, Chen L 2005 Opt. Lett. 30 195
[12] Pelletier V, Asakawa K, Wu M 2006 Appl. Phys. Lett. 88 211114
[13] Chen L, Wang J J, Walters F 2007 Appl. Phys. Lett. 90 063111
[14] Wang Q, Zhang D W, Huang Y S, Ni Z J, Chen J B, Zhong Y W, Zhuang S L 2010 Opt. Lett. 35 1236
[15] Yang W W, Wen Y M, Li P, Bian L X 2008 Acta Phys. Sin. 57 4545 (in Chinese) [杨伟伟, 文玉梅, 李平, 卞雷祥 2008 57 4545]
计量
- 文章访问数: 8318
- PDF下载量: 6940
- 被引次数: 0