搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电泳辅助制备伪1-3陶瓷/聚合物压电复合材料

武峥 周嘉仪 曹艺 马柯 贾艳敏 张以河

引用本文:
Citation:

电泳辅助制备伪1-3陶瓷/聚合物压电复合材料

武峥, 周嘉仪, 曹艺, 马柯, 贾艳敏, 张以河

Electrophoresis-assisted fabrication of pseudo 1-3 ceramic/polymer piezoelectric composites

Wu Zheng, Zhou Jia-Yi, Cao Yi, Ma Ke, Jia Yan-Min, Zhang Yi-He
PDF
导出引用
  • 1-3压电复合材料的压电、介电及铁电性能要远远优于0-3压电复合材料. 在制备传统的0-3复合材料过程中引入电泳技术,使得压电颗粒在聚合物基体中取向排列,制备得到伪1-3复合材料. 实验结果表明:在制备PZT/环氧树脂0-3复合压电材料固化过程中,采用500 V/mm,4 kHz的电场对其进行电泳辅助取向,可使得颗粒呈现珍珠串状排列,得到伪1-3复合材料;其压电、介电、铁电性能均比原来的0-3复合材料有显著的提高. 电泳辅助制备技术用于制备伪1-3复合压电材料具有操作简单、成本低廉、压电、介电、铁电性能显著提高等优点,在智能传感领域具有很好的实际应用前景.
    The 1-3 ceramic/polymer piezoelectric composites have greater dielectric, piezoelectric and ferroelectric properties than 0-3 composites. In this paper, electrophoresis is introduced into the fabrication procedure of traditional 0-3 ceramic/polymer piezoelectric composite to move and pearl-serially align the piezoelectric particles in the polymer matrix, which is called pseudo 1-3 composite. In this work, the PZT/epoxy pseudo 1-3 piezoelectric is fabricated via using a 500 V/mm, 4 kHz AC electric field to form the electrophoresis phenomenon during the curing procedure. Compared with the traditional 0-3 piezoelectric composites, the pseudo 1-3 piezoelectric composites behave as the significantly-enhanced dielectric, piezoelectric and ferroelectric performances on basis of our theoretical analysis and experimental measurement result. Electrophoresis–assisted fabricating pseudo 1-3 piezoelectric composite possesses the advantages of simple operation, low cost and significant performance improvement, which make it hopeful to be used to prepare high-performance ceramic/polymer piezoelectric composites for practical application.
    • 基金项目: 国家自然科学基金(批准号:51002141)和浙江省大学生科技创新活动计划新苗人才计划项目(批准号:2012R404016)资助的课题.
    • Funds: Project supported by the National Nature Science Foundation of China (Grant No. 51002141) and the Zhejiang Provincial Xinmiao Project, China (Grant No. 2012R404016).
    [1]

    Zhou K Y, Ye H, Zheng H Y, Yin Y, Shen W D 2010 Acta Phys. Sin. 59 365 (in Chinese) [周可余, 叶辉, 甄红宇, 尹伊, 沈伟东 2010 59 365]

    [2]

    Ma X Y, Chen K A, Ding S H, Zhang B R 2013 Acta Phys. Sin. 62 123401 (in Chinese) [马玺越, 陈克安, 丁少虎, 张冰瑞 2013 62 123401]

    [3]

    He H J, Nie G Q, Lin J X, Yang J S 2013 Chin. Phys. B 22 087704

    [4]

    Yu J, Zhang D, Liu X Z, Gong X F, Song F X 2007 Acta Phys. Sin. 56 5909 (in Chinese) [于洁, 章东, 刘晓宙, 龚秀芬, 宋富先 2007 56 5909]

    [5]

    Wan H, Xie L Q, Wu X Z, Liu X C 2005 Acta Phys. Sin. 54 3872 (in Chinese) [万红, 谢立强, 吴学忠, 刘希从 2005 54 3872]

    [6]

    Ende D, Kempen S E, Wu X, Groen A W, Randall A C, Zwaag S 2012 J. Appl. Phys. 111 124107

    [7]

    Yu L G, Li Z H, Ma L L 2012 Acta Phys. Sin. 61 024301 (in Chinese) [于利刚, 李朝晖, 马黎黎 2012 61 024301]

    [8]

    Ma J, Shi Z, Lin Y H, Nan C W 2009 Acta Phys. Sin. 58 5852 (in Chinese) [马静, 施展, 林元华, 南策文 2009 58 5852]

    [9]

    Huang S, Chang J, Xu R, Liu F T, Lu L C, Ye Z M, Cheng X 2004 Smart Mater. Struct. 13 270

    [10]

    Yang F X, Zhang D M, Deng Z W, Jiang S L, Xu J, Li S D 2008 Acta Phys. Sin. 57 3840 (in Chinese) [杨凤霞, 张端明, 邓宗伟, 姜胜林, 徐洁, 李舒丹 2008 57 3840]

    [11]

    Xu R X, Chen W, Zhou J 2006 Acta Phys. Sin. 55 4292 (in Chinese) [徐任信, 陈文, 周静 2006 55 4292]

    [12]

    Zhou D, Luo L H, Wang F F, Jia Y M, Zhao X Y, Luo H S 2008 Acta Phys. Sin. 57 4552 (in Chinese) [周丹, 罗来慧, 王飞飞, 贾艳敏, 赵祥永, 罗豪甦 2008 57 4552]

    [13]

    Zhou J P, Shi Z, Liu G, He H C, Nan C W 2006 Acta Phys. Sin. 55 3766 (in Chinese) [周剑平, 施展, 刘刚, 何泓材, 南策文 2006 55 3766]

    [14]

    Zhong C G, Jiang Q, Fang J H, Jiang X F, Luo L J 2009 Acta Phys. Sin. 58 7227 (in Chinese) [仲崇贵, 蒋青, 方靖淮, 江学范, 罗礼进 2009 58 7227]

    [15]

    Thomas F M, Victor F J, Ahmad S, Roland L L, Richard B C 1995 J. Am. Ceram. Soc. 78 2913

    [16]

    Quint J, Viallard A 1978 J. Solution Chem. 7 525

    [17]

    Wei Q Q, Wei Z J, Ren L M, Zhao H B, Ye T Y, Shi Z J, Fu Y Y, Zhang X, Huang R 2012 Chin. Phys. B 21 088103

    [18]

    Ren Y K, Ao H R, Gu J Z, Jiang H Y, Antonio R 2009 Acta Phys. Sin. 58 7869 (in Chinese) [任玉坤, 敖宏瑞, 顾建忠, 姜洪源, Antonio Ramos 2009 58 7869]

    [19]

    Jiang H Y, Ren Y K, Tao Y 2011 Chin. Phys. B 20 057701

    [20]

    Yamamot K, Akita S, Nakayama Y 1998 J. Phys. D: Appl. Phys. 31 34

    [21]

    Chen X Q, Sajto T, Yamada H, Matsushige K 2001 Appl. Phys. Lett. 78 3714

    [22]

    Furukawa T, Ishida K, Fukada E 1979 J. Appl. Phys. 50 4904

    [23]

    Bottcher C J F 1973 Theory of Electric Polarization (Vol. 1) (New York: Elsevier Science) p41

  • [1]

    Zhou K Y, Ye H, Zheng H Y, Yin Y, Shen W D 2010 Acta Phys. Sin. 59 365 (in Chinese) [周可余, 叶辉, 甄红宇, 尹伊, 沈伟东 2010 59 365]

    [2]

    Ma X Y, Chen K A, Ding S H, Zhang B R 2013 Acta Phys. Sin. 62 123401 (in Chinese) [马玺越, 陈克安, 丁少虎, 张冰瑞 2013 62 123401]

    [3]

    He H J, Nie G Q, Lin J X, Yang J S 2013 Chin. Phys. B 22 087704

    [4]

    Yu J, Zhang D, Liu X Z, Gong X F, Song F X 2007 Acta Phys. Sin. 56 5909 (in Chinese) [于洁, 章东, 刘晓宙, 龚秀芬, 宋富先 2007 56 5909]

    [5]

    Wan H, Xie L Q, Wu X Z, Liu X C 2005 Acta Phys. Sin. 54 3872 (in Chinese) [万红, 谢立强, 吴学忠, 刘希从 2005 54 3872]

    [6]

    Ende D, Kempen S E, Wu X, Groen A W, Randall A C, Zwaag S 2012 J. Appl. Phys. 111 124107

    [7]

    Yu L G, Li Z H, Ma L L 2012 Acta Phys. Sin. 61 024301 (in Chinese) [于利刚, 李朝晖, 马黎黎 2012 61 024301]

    [8]

    Ma J, Shi Z, Lin Y H, Nan C W 2009 Acta Phys. Sin. 58 5852 (in Chinese) [马静, 施展, 林元华, 南策文 2009 58 5852]

    [9]

    Huang S, Chang J, Xu R, Liu F T, Lu L C, Ye Z M, Cheng X 2004 Smart Mater. Struct. 13 270

    [10]

    Yang F X, Zhang D M, Deng Z W, Jiang S L, Xu J, Li S D 2008 Acta Phys. Sin. 57 3840 (in Chinese) [杨凤霞, 张端明, 邓宗伟, 姜胜林, 徐洁, 李舒丹 2008 57 3840]

    [11]

    Xu R X, Chen W, Zhou J 2006 Acta Phys. Sin. 55 4292 (in Chinese) [徐任信, 陈文, 周静 2006 55 4292]

    [12]

    Zhou D, Luo L H, Wang F F, Jia Y M, Zhao X Y, Luo H S 2008 Acta Phys. Sin. 57 4552 (in Chinese) [周丹, 罗来慧, 王飞飞, 贾艳敏, 赵祥永, 罗豪甦 2008 57 4552]

    [13]

    Zhou J P, Shi Z, Liu G, He H C, Nan C W 2006 Acta Phys. Sin. 55 3766 (in Chinese) [周剑平, 施展, 刘刚, 何泓材, 南策文 2006 55 3766]

    [14]

    Zhong C G, Jiang Q, Fang J H, Jiang X F, Luo L J 2009 Acta Phys. Sin. 58 7227 (in Chinese) [仲崇贵, 蒋青, 方靖淮, 江学范, 罗礼进 2009 58 7227]

    [15]

    Thomas F M, Victor F J, Ahmad S, Roland L L, Richard B C 1995 J. Am. Ceram. Soc. 78 2913

    [16]

    Quint J, Viallard A 1978 J. Solution Chem. 7 525

    [17]

    Wei Q Q, Wei Z J, Ren L M, Zhao H B, Ye T Y, Shi Z J, Fu Y Y, Zhang X, Huang R 2012 Chin. Phys. B 21 088103

    [18]

    Ren Y K, Ao H R, Gu J Z, Jiang H Y, Antonio R 2009 Acta Phys. Sin. 58 7869 (in Chinese) [任玉坤, 敖宏瑞, 顾建忠, 姜洪源, Antonio Ramos 2009 58 7869]

    [19]

    Jiang H Y, Ren Y K, Tao Y 2011 Chin. Phys. B 20 057701

    [20]

    Yamamot K, Akita S, Nakayama Y 1998 J. Phys. D: Appl. Phys. 31 34

    [21]

    Chen X Q, Sajto T, Yamada H, Matsushige K 2001 Appl. Phys. Lett. 78 3714

    [22]

    Furukawa T, Ishida K, Fukada E 1979 J. Appl. Phys. 50 4904

    [23]

    Bottcher C J F 1973 Theory of Electric Polarization (Vol. 1) (New York: Elsevier Science) p41

  • [1] 徐萌, 晏建民, 徐志学, 郭磊, 郑仁奎, 李晓光. 基于PbMg1/3Nb2/3O3-PbTiO3压电单晶的磁电复合薄膜材料研究进展.  , 2018, 67(15): 157506. doi: 10.7498/aps.67.20180911
    [2] 王江舵, 代建清, 宋玉敏, 张虎, 牛之慧. BaTiO3/SrTiO3(1:1)超晶格的晶格动力学、介电和压电性能的第一性原理研究.  , 2014, 63(12): 126301. doi: 10.7498/aps.63.126301
    [3] 张杭波, 吴化平, 周挺, 张征, 柴国钟. 面外应变对1-3型垂直异质P(VDF-TrFE)基复合薄膜电热性能的调控.  , 2013, 62(24): 247701. doi: 10.7498/aps.62.247701
    [4] 王伟, 唐佳伟, 王乐天, 陈小兵. 脉冲激光沉积法制备高温压电薄膜0.20 BiInO3-0.80PbTiO3(已撤稿).  , 2013, 62(23): 237701. doi: 10.7498/aps.62.237701
    [5] 张丽娟, 王力海, 刘建党, 李强, 成斌, 张杰, 安然, 赵明磊, 叶邦角. 非铁电压电复合陶瓷SrTiO3-Bi12TiO20 (ST-BT) 的正电子湮没谱学研究.  , 2012, 61(23): 237805. doi: 10.7498/aps.61.237805
    [6] 于利刚, 李朝晖, 马黎黎. 0-3型压电复合材料覆盖层水下吸声性能的理论研究.  , 2012, 61(2): 024301. doi: 10.7498/aps.61.024301
    [7] 杨立峰, 王亚非, 周鹰. 一维压电Fibonacci类准周期声子晶体传输特性.  , 2012, 61(10): 107702. doi: 10.7498/aps.61.107702
    [8] 赵静波, 杜红亮, 屈绍波, 张红梅, 徐卓. A位等价与非等价取代对(K0.5Na0.5)NbO3陶瓷极化的影响.  , 2011, 60(10): 107701. doi: 10.7498/aps.60.107701
    [9] 仲崇贵, 蒋青, 方靖淮, 江学范, 罗礼进. 1-3型纳米多铁复合薄膜中电场诱导的磁化研究.  , 2009, 58(10): 7227-7234. doi: 10.7498/aps.58.7227
    [10] 杨凤霞, 张端明, 邓宗伟, 姜胜林, 徐 洁, 李舒丹. 基体电导率对0-3型铁电复合材料高压极化行为及损耗的影响.  , 2008, 57(6): 3840-3845. doi: 10.7498/aps.57.3840
    [11] 周 丹, 罗来慧, 王飞飞, 贾艳敏, 赵祥永, 罗豪甦. 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3单晶/环氧树脂1-3型复合材料的压电性能研究.  , 2008, 57(7): 4552-4557. doi: 10.7498/aps.57.4552
    [12] 王煜博, 毛邦宁, 陈 立, 王丽敏, 潘佰良. 电泳式He-Sr+复合激光特性研究.  , 2008, 57(1): 219-222. doi: 10.7498/aps.57.219
    [13] 周剑平, 施 展, 刘 刚, 何泓材, 南策文. 铁电/铁磁1-3型结构复合材料磁电性能分析.  , 2006, 55(7): 3766-3771. doi: 10.7498/aps.55.3766
    [14] 徐任信, 陈 文, 周 静. 聚合物电导率对0-3型压电复合材料极化性能的影响.  , 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
    [15] 夏婷婷, 钟建伟, 毛邦宁, 陈 钢, 姚志欣, 潘佰良. 高重复率脉冲放电金属蒸气激光中电泳对金属蒸气分布的影响.  , 2006, 55(1): 202-205. doi: 10.7498/aps.55.202
    [16] 胡 易. 一般切割面的铋硅族氧化物光折变增益特性及动态光栅优化.  , 2005, 54(11): 5428-5434. doi: 10.7498/aps.54.5428
    [17] 汪壮兵, 许小亮, 陈莹莹, 周世铭, 孔 宁, 郭 嘉, 刘洪图, 施朝淑. 用电泳法制备ZnxMg1-xO薄膜及其特性研究.  , 2004, 53(11): 3924-3928. doi: 10.7498/aps.53.3924
    [18] 王淑芳, 朱亚斌, 张 芹, 刘 震, 周岳亮, 陈正豪, 吕惠宾, 杨国桢. 利用电泳法在金属基底上制备MgB2超导厚膜.  , 2003, 52(6): 1505-1508. doi: 10.7498/aps.52.1505
    [19] 尹鑫, 吕孟凯, 李福奇. NH4IO3晶体的压电性能.  , 1989, 38(1): 124-127. doi: 10.7498/aps.38.124
    [20] 吴自勤, 高巧君, 李永洪, 唐先德. Nb/Nb3Sn复合超导材料的高压电子显微镜观察.  , 1980, 29(9): 1226-1230. doi: 10.7498/aps.29.1226
计量
  • 文章访问数:  6928
  • PDF下载量:  500
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-07
  • 修回日期:  2013-10-16
  • 刊出日期:  2014-01-05

/

返回文章
返回
Baidu
map