搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压电陶瓷与光纤电光调制器双通道伺服反馈的激光相位锁定实验研究

侯佳佳 赵刚 谭巍 邱晓东 贾梦源 马维光 张雷 董磊 冯晓霞 尹王保 肖连团 贾锁堂

引用本文:
Citation:

基于压电陶瓷与光纤电光调制器双通道伺服反馈的激光相位锁定实验研究

侯佳佳, 赵刚, 谭巍, 邱晓东, 贾梦源, 马维光, 张雷, 董磊, 冯晓霞, 尹王保, 肖连团, 贾锁堂

Experimental researches of laser phase lock with dual-servo feedbacks based on the piezoelectric transducer and fiber electrooptic phase modulator

Hou Jia-Jia, Zhao Gang, Tan Wei, Qiu Xiao-Dong, Jia Meng-Yuan, Ma Wei-Guang, Zhang Lei, Dong Lei, Feng Xiao-Xia, Yin Wang-Bao, Xiao Lian-Tuan, Jia Suo-Tang
PDF
导出引用
  • 通过相干合束提高光纤激光源的输出功率是目前研究的一个热门领域,其中多束激光的相位控制是提高合束效率的关键技术之一.本文基于主动相位锁定技术对传统外差探测法进行了改进,基于压电陶瓷及光纤电光相位调制器双通道伺服反馈,实现了对同一激光源输出的两路相位独立变化的1531 nm激光长时间的相位锁定.通过选择合适的PID控制参数,将反馈带宽拓展到了220 kHz(受限于PID控制器自身带宽).最终的相位锁定控制在0.88°以内,即相位控制精度为λ/400,经过160 s平均后可得到相位锁定的最佳值为0.006°,整体实验装置结构简单、运行稳定.
    Fiber laser can be used for fiber optic communications,laser cutting,industrial manufacture,defense security and many other fields because of its advantages of narrow output linewidth,good reproducibility,etc.However,due to nonlinear and thermal effects,only a limited output power of a single fiber can be obtained with a sharp attenuation of the output beam quality,which obstructs the applications of fiber lasers.Therefore,the research of expanding the power of a fiber laser source while maintaining its beam quality by combining coherent beam has become a hot subject at present.In this field,the performance of phase control of coherent laser beams is a key factor to influence the efficiency of combination.The phase-controlling methods mainly include stochastic parallel gradient descent control algorithm, dithering,and heterodyne detection.In this paper,based on the active phase lock technology,the traditional heterodyne detection method is improved by the use of a fiber electro-optic phase modulator (EOM) rather than an acousto-optic frequency shifter (AOFS) to avoid the complex designs of the RF driver and circuit,which makes the overall experimental setup simple and stable.Moreover,in order to achieve a stable and wide correction range of phase locking,two servo paths are designed by use of piezoelectric transducer (PZT) and EOM1 to correct the optical phase differences.Firstly, a single-frequency narrow-width fiber laser with its central wavelength of 1531 nm is split by a beam splitter to generate a signal and a reference beam,respectively.The reference beam is phase modulated by another EOM2 with a 15 MHz signal.The phase error signal is obtained by demodulating the detected heterodyne signal at the modulation frequency. After that the error signal is divided into two parts,and sent to two PID servos to control PZT and EOM1,respectively. The PZT,used in the slow feedback loop,eliminates the laser phase error induced by the ambient temperature drift, while the EOM1,in the quick feedback loop,can eliminate the influence of high frequency noise.Two PID servos are carefully designed according to the measurements of the dynamic response of the PZT and EOM1.A stable feedback loop with a bandwidth of 220 kHz (limited by the bandwidth of PID controller) is obtained according to the measurement of its phase error signal spectrum,thus a tight lock is expected.As a consequence,the error of phase locking is less than 0.88°,which indicates that the phase control accuracy is λ/400.The long-term stability of the system is assessed by a 2 hour monitoring of the lock error signal.According to the analysis of Allan deviation,the best phase lock value of 0.006° can be obtained for an integration time of 160 s.The overall phase lock experimental setup is simple and easy to operate;moreover the phase lock can be further improved by optimizing the parameters of the PID controller.
      通信作者: 马维光, mwg@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB921603)、教育部长江学者和创新团队发展计划(批准号:IRT13076)、国家自然科学基金(批准号:11434007,61475093,61378047,61275213,61475093)、国家科技支撑计划(批准号:2013BAC14B01)、山西省青年科学基金(批准号:2013021004-1,2012021022-1)、山西省回国留学人员科研资助项目(批准号:2013-011,2013-01)和山西省高等学校创新人才支持计划资助的课题.
      Corresponding author: Ma Wei-Guang, mwg@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the Program for Changjiang Scholar and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the National Natural Science Foundation of China (Grant Nos. 11434007, 61475093, 61378047, 61275213, 61475093), the National Key Technologies Research and Development Program of the Ministry of Science and Technology of China (Grant Nos. 2013BAC14B01), the Foundation for Young Scholars of Shanxi Province, China (Grant Nos. 2013021004-1, 2012021022-1), the Shanxi Scholarship Council of China (Grant Nos. 2013-011, 2013-01), and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China.
    [1]

    He B, Lou Q H, Zhou J, Zheng Y H, Xue D, Dong J X, Wei Y R, Zhang F P, Qi Y F, Zhu J Q, Li J Y, Li S Y, Wang Z J 2007 Chin. Opt. Lett. 5 412

    [2]

    Zhou P 2009 Ph. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[周朴2009博士学位论文(长沙:国防科学技术大学)]

    [3]

    Wang X L, Zhou P, Ma Y X, Ma H T, Li X, Xu X J, Zhao Y J 2011 Acta Phys. Sin. 60 084203 (in Chinese)[王小林, 周朴, 马阎星, 马浩统, 李霄, 许晓军, 赵伊君2011 60 084203]

    [4]

    Fan T Y 2005 IEEE J. Sel. Top. Quantum Electron. 11 567

    [5]

    Jolivet V, Bourdon P, Bennai B, Lombard L, Goular D, Pourtal E, Canat G, Jaouen Y, Moreau B, Vasseur O 2009 IEEE J. Sel. Top. Quantum Electron. 15 257

    [6]

    Ma Y X, Liu Z J, Zhou P, Wang X L, Ma H T, Li X, Si L, Xu X J 2009 Chin. Phys. Lett. 26 44204

    [7]

    Ma P F, Zhou P, Ma Y X, Su R T, Liu Z J 2012 Chinese J. Lasers 39 0402009 (in Chinese)[马鹏飞, 周朴, 马阎星, 粟荣涛, 刘泽金2012中国激光39 0402009]

    [8]

    Ma Y X, Si L, Zhou P, Wang X L, Zhang K, Zhao H C, Xu X J, Zhao Y J 2012 Journal of National University of Defense Technology 34 38 (in Chinese)[马阎星, 司磊, 周朴, 王小林, 张侃, 赵海川, 许晓军, 赵伊君2012国防科技大学学报34 38]

    [9]

    Wang X L, Zhou P, Ma Y X, Ma H T, Li X, Xu X J, Zhao Y J 2012 Journal of National University of Defense Technology 34 33 (in Chinese)[王小林, 周朴, 马阎星, 马浩统, 李霄, 许晓军, 赵伊君2012国防科技大学学报34 33]

    [10]

    Zhou P, Liu Z J, Xu X J 2009 Chinese Journal of Laser 36 276 (in Chinese)[周朴, 刘泽金, 许晓军2009中国激光36 276]

    [11]

    Liu Z J, Zhou P, Wang X L, Ma Y X, Xu X J, Hou J 2010 Chinese Journal of Laser 37 2221 (in Chinese)[刘泽金, 周朴, 王小林, 马阎星, 许晓军, 侯静2010中国激光37 2221]

    [12]

    Enloe L H, Rodda J L 1965 Proc. IEEE 53 165

    [13]

    Stover H L, Steier W H, 1966 Appl. Phys. Lett. 8 91

    [14]

    Hall J L, Sheng L, Kramer G 1987 IEEE J. Quantum Electron. 23 427

    [15]

    Vorontsov M A, Weyrauch T, Beresnev L A, Carhart G W, Liu L, Aschenbach K 2009 IEEE J. Sel. Top. Quantum Electron. 15 269

    [16]

    Wang X L, Zhou P, Ma Y X, Ma H T, Xu X J, Liu Z J, Zhao Y J 2010 Acta Phys. Sin. 59 973 (in Chinese)[王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君2010 59 973]

    [17]

    Goodno G D, Asman C P, Anderegg J, Brosnan S, Cheung E C, Hammo D, Injeyan H, Komine H, Long W H, Mcclellan M Jr, Mcnau S J, Redmond S, Simpson R, Sollee J, Weber M, Weiss S B, Wickham M 2007 IEEE J. Sel. Top. Quantum Electron. 13 460

    [18]

    Xiao R, Hou J, Jiang Z F, Liu M 2006 Acta Phys. Sin. 55 6464 (in Chinese)[肖瑞, 侯静, 姜宗福, 刘明2006 55 6464]

    [19]

    Yu C X, Augst S J, Redmond S M, Goldizen K C, Murphy D V, Sanchez A, Fan Y 2011 Opt. Lett. 36 2686

    [20]

    Ma Y X, Zhou P, Wang X L, Ma H T, Xu X J, Si L, Liu Z J, Zhao Y J 2010 Opt. Lett. 35 1308

    [21]

    Goodno G D, Komine H, McNaught S J, Weiss S B, Redmond S, Long W, Simpson R, Cheung E C, Howland D, Epp P, Weber M, McClellan M, Sollee J, Injeyan H 2006 Opt. Lett. 31 1247

    [22]

    Wang Y X, Qiu Q, Shi S J, Su J, Liao Y, Xiong C D 2014 COL 12 021402

    [23]

    Vornehm J E, Schweinsberg A, Shi Z, Gauthier D J, Boyd R W 2013 Opt. Express 21 13094

    [24]

    Mller H, Chiow S, Long Q, Chu S 2006 Opt. Lett. 31 202

    [25]

    Patrick E 2014 Ph. D. Dissertation (Sweden:Ume university)

    [26]

    Skř'inský J, Janeč ková R, Grigorová E, Střižík M, Kubát P, Herecová L, Nevrlý V, Zelinger Z, Civiš S 2009 J. Mol. Spectrosc. 256 99

  • [1]

    He B, Lou Q H, Zhou J, Zheng Y H, Xue D, Dong J X, Wei Y R, Zhang F P, Qi Y F, Zhu J Q, Li J Y, Li S Y, Wang Z J 2007 Chin. Opt. Lett. 5 412

    [2]

    Zhou P 2009 Ph. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[周朴2009博士学位论文(长沙:国防科学技术大学)]

    [3]

    Wang X L, Zhou P, Ma Y X, Ma H T, Li X, Xu X J, Zhao Y J 2011 Acta Phys. Sin. 60 084203 (in Chinese)[王小林, 周朴, 马阎星, 马浩统, 李霄, 许晓军, 赵伊君2011 60 084203]

    [4]

    Fan T Y 2005 IEEE J. Sel. Top. Quantum Electron. 11 567

    [5]

    Jolivet V, Bourdon P, Bennai B, Lombard L, Goular D, Pourtal E, Canat G, Jaouen Y, Moreau B, Vasseur O 2009 IEEE J. Sel. Top. Quantum Electron. 15 257

    [6]

    Ma Y X, Liu Z J, Zhou P, Wang X L, Ma H T, Li X, Si L, Xu X J 2009 Chin. Phys. Lett. 26 44204

    [7]

    Ma P F, Zhou P, Ma Y X, Su R T, Liu Z J 2012 Chinese J. Lasers 39 0402009 (in Chinese)[马鹏飞, 周朴, 马阎星, 粟荣涛, 刘泽金2012中国激光39 0402009]

    [8]

    Ma Y X, Si L, Zhou P, Wang X L, Zhang K, Zhao H C, Xu X J, Zhao Y J 2012 Journal of National University of Defense Technology 34 38 (in Chinese)[马阎星, 司磊, 周朴, 王小林, 张侃, 赵海川, 许晓军, 赵伊君2012国防科技大学学报34 38]

    [9]

    Wang X L, Zhou P, Ma Y X, Ma H T, Li X, Xu X J, Zhao Y J 2012 Journal of National University of Defense Technology 34 33 (in Chinese)[王小林, 周朴, 马阎星, 马浩统, 李霄, 许晓军, 赵伊君2012国防科技大学学报34 33]

    [10]

    Zhou P, Liu Z J, Xu X J 2009 Chinese Journal of Laser 36 276 (in Chinese)[周朴, 刘泽金, 许晓军2009中国激光36 276]

    [11]

    Liu Z J, Zhou P, Wang X L, Ma Y X, Xu X J, Hou J 2010 Chinese Journal of Laser 37 2221 (in Chinese)[刘泽金, 周朴, 王小林, 马阎星, 许晓军, 侯静2010中国激光37 2221]

    [12]

    Enloe L H, Rodda J L 1965 Proc. IEEE 53 165

    [13]

    Stover H L, Steier W H, 1966 Appl. Phys. Lett. 8 91

    [14]

    Hall J L, Sheng L, Kramer G 1987 IEEE J. Quantum Electron. 23 427

    [15]

    Vorontsov M A, Weyrauch T, Beresnev L A, Carhart G W, Liu L, Aschenbach K 2009 IEEE J. Sel. Top. Quantum Electron. 15 269

    [16]

    Wang X L, Zhou P, Ma Y X, Ma H T, Xu X J, Liu Z J, Zhao Y J 2010 Acta Phys. Sin. 59 973 (in Chinese)[王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君2010 59 973]

    [17]

    Goodno G D, Asman C P, Anderegg J, Brosnan S, Cheung E C, Hammo D, Injeyan H, Komine H, Long W H, Mcclellan M Jr, Mcnau S J, Redmond S, Simpson R, Sollee J, Weber M, Weiss S B, Wickham M 2007 IEEE J. Sel. Top. Quantum Electron. 13 460

    [18]

    Xiao R, Hou J, Jiang Z F, Liu M 2006 Acta Phys. Sin. 55 6464 (in Chinese)[肖瑞, 侯静, 姜宗福, 刘明2006 55 6464]

    [19]

    Yu C X, Augst S J, Redmond S M, Goldizen K C, Murphy D V, Sanchez A, Fan Y 2011 Opt. Lett. 36 2686

    [20]

    Ma Y X, Zhou P, Wang X L, Ma H T, Xu X J, Si L, Liu Z J, Zhao Y J 2010 Opt. Lett. 35 1308

    [21]

    Goodno G D, Komine H, McNaught S J, Weiss S B, Redmond S, Long W, Simpson R, Cheung E C, Howland D, Epp P, Weber M, McClellan M, Sollee J, Injeyan H 2006 Opt. Lett. 31 1247

    [22]

    Wang Y X, Qiu Q, Shi S J, Su J, Liao Y, Xiong C D 2014 COL 12 021402

    [23]

    Vornehm J E, Schweinsberg A, Shi Z, Gauthier D J, Boyd R W 2013 Opt. Express 21 13094

    [24]

    Mller H, Chiow S, Long Q, Chu S 2006 Opt. Lett. 31 202

    [25]

    Patrick E 2014 Ph. D. Dissertation (Sweden:Ume university)

    [26]

    Skř'inský J, Janeč ková R, Grigorová E, Střižík M, Kubát P, Herecová L, Nevrlý V, Zelinger Z, Civiš S 2009 J. Mol. Spectrosc. 256 99

  • [1] 张秀芳, 马军, 徐莹, 任国栋. 光电管耦合FitzHugh-Nagumo神经元的同步.  , 2021, 70(9): 090502. doi: 10.7498/aps.70.20201953
    [2] 张松然, 何代华, 涂华垚, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林. HgCdTe薄膜的输运特性及其应力调控.  , 2020, 69(5): 057301. doi: 10.7498/aps.69.20191330
    [3] 刘亦轩, 李昭, 汤浩正, 逯景桐, 李敬锋, 龚文, 王轲. 晶粒尺寸对钙钛矿型压电陶瓷压电性能的影响.  , 2020, 69(21): 217704. doi: 10.7498/aps.69.20201079
    [4] 魏天丽, 吴德伟, 杨春燕, 罗均文, 苗强, 李响. 一种双模压缩微波制备的相位锁定方案.  , 2020, 69(3): 034204. doi: 10.7498/aps.69.20191348
    [5] 郑隆立, 齐世超, 王春明, 石磊. 高居里温度铋层状结构钛钽酸铋(Bi3TiTaO9)的压电、介电和铁电特性.  , 2019, 68(14): 147701. doi: 10.7498/aps.68.20190222
    [6] 丁琨, 武雪飞, 窦秀明, 孙宝权. 电驱动金刚石对顶砧低温连续加压装置.  , 2016, 65(3): 037701. doi: 10.7498/aps.65.037701
    [7] 周雨竹, 黄莉莉, 柴路, 王清月, 胡明列. 利用Kagome光纤实现多芯光子晶体光纤的输出合束.  , 2016, 65(2): 024206. doi: 10.7498/aps.65.024206
    [8] 孟增明, 黄良辉, 彭鹏, 陈良超, 樊浩, 王鹏军, 张靖. 光学相位锁定激光在原子玻色-爱因斯坦凝聚中实现拉曼耦合.  , 2015, 64(24): 243202. doi: 10.7498/aps.64.243202
    [9] 王恒, 张尚剑, 邹新海, 刘俊伟, 张雅丽, 李和平, 刘永. 基于双音外差的电光相位调制器半波电压自校准测量方法.  , 2015, 64(12): 124211. doi: 10.7498/aps.64.124211
    [10] 朱敏昊, 吴学健, 尉昊赟, 张丽琼, 张继涛, 李岩. 基于飞秒光频梳的压电陶瓷闭环位移控制系统.  , 2013, 62(7): 070702. doi: 10.7498/aps.62.070702
    [11] 凌进中, 黄元申, 王中飞, 王琦, 张大伟, 庄松林. 可调谐型金属线栅偏振器的特性研究.  , 2013, 62(14): 144214. doi: 10.7498/aps.62.144214
    [12] 张锐, 王建军, 粟敬钦, 刘兰琴, 丁磊, 唐军, 刘华, 景峰, 张小民. 基于波导相位调制器的光谱色散平滑技术实验研究.  , 2010, 59(9): 6290-6298. doi: 10.7498/aps.59.6290
    [13] 薛宇豪, 周军, 何兵, 李震, 漆云凤, 刘驰, 楼祺洪. 基于空间滤波的光纤激光被动相位锁定技术研究.  , 2010, 59(11): 7869-7874. doi: 10.7498/aps.59.7869
    [14] 王争, 赵新杰, 何明, 周铁戈, 岳宏卫, 阎少林. 嵌入到Fabry-Perot谐振腔的双晶约瑟夫森结阵列的阻抗匹配和相位锁定研究.  , 2010, 59(5): 3481-3487. doi: 10.7498/aps.59.3481
    [15] 孙琳, 褚君浩, 杨平雄, 冯楚德. Sr位Nd掺杂对SrBi2Nb2O9性能的影响及机理研究.  , 2009, 58(8): 5790-5797. doi: 10.7498/aps.58.5790
    [16] 蔡冬梅, 凌 宁, 姜文汉. 纯相位液晶空间光调制器拟合泽尼克像差性能分析.  , 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [17] 陈子伦, 周 朴, 许晓军, 侯 静, 姜宗福. 谱线和耦合系数对光纤激光器相互注入锁定的影响.  , 2008, 57(6): 3588-3592. doi: 10.7498/aps.57.3588
    [18] 王建明, 段开椋, 王屹山. 两光纤激光器相干合成的实验研究.  , 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [19] 雷 兵, 冯 莹, 刘泽金. 利用全光纤耦合环实现三路光纤激光器的相位锁定.  , 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [20] 邰仁忠, 吕福云, 袁树忠, 关信安, 李兵. 压电诱导型声光调制器中的电光效应.  , 1992, 41(6): 1012-1018. doi: 10.7498/aps.41.1012
计量
  • 文章访问数:  6655
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-07
  • 修回日期:  2016-08-29
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map