搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

射电天文用太赫兹三通带频率选择表面设计

刘海文 占昕 任宝平

引用本文:
Citation:

射电天文用太赫兹三通带频率选择表面设计

刘海文, 占昕, 任宝平

Design of triple bandpass frequency selective surface in terahertz wave band for radio astronomy

Liu Hai-Wen, Zhan Xin, Ren Bao-Ping
PDF
导出引用
  • 本文设计一种基于单屏改进型开口谐振环(SRR)的太赫兹频率选择表面(FSS). 改进型 SRR 谐振单元由具有开口缝的金属贴片组成, 开口缝的物理尺寸会影响其阶跃特征阻抗特性. 本文通过对改进型 SRR 单元结构建立LC等效电路模型, 提取等效电路模型参数, 并结合传输线理论, 得到 FSS 的基频计算公式和谐波关系式. 相比于传统均匀 SRR, 本文所提出的改进型 SRR 多频带传输的控制更为灵活. 基于此特点, 设计了一款中心频率依次为 0.46 THz, 0.86 THz和 1.03 THz, 可应用于射电天文的三通带太赫兹 FSS. 采用电磁仿真软件对影响该 FSS 传输特性的关键参数、周期间隔、小型化程度以及入射角敏感性等重要指标进行分析研究. 结果表明, 改进型 SRR 三通带 FSS 在三个通带内的反射系数分别为 -37.6 dB, -13 dB和 -19.6 dB, 在0°–60° 范围内均具有稳定的频率响应特性, 且具有小型化程度高、损耗低等特点. 这种三通带 FSS 在太赫兹频段射电天文方面有潜在的应用价值.
    A single screen terahertz frequency selective surface (FS) using the improved split ring resonators (SRRs) is designed in this paper. The resonance unit of an improved SRR consists of an open seam metal patch, while the physical size of the open seam metal patch will directly affect the stepped impedance characteristics. In the paper, LC equivalent circuit model for the improved SRR unit structure is established to extract the equivalent circuit model parameters. Then the relationship between the fundamental frequency of the FSS formula and the harmonics is obtained from the basic theory of the transmission line. Compared to the traditional uniform SRR, the control of multi-band in the improved SRR is more flexible. It is an outstanding characteristic for multi-band FSS design. Based on this characteristic, the triple-band terahertz FSS centered at 0.46, 0.86 and 1.03 THz respectively is designed successively, which can be used in radio astronomy application. By using HFSS 13.0 electromagnetic software simulation, many important indicators such as the key parameters that affect the transmission characteristics of the FSS, periodic intervals, miniaturization degree and the sensitivity of the incidence angle have been studied and analyzed. Both the theoretical analysis and simulated results demonstrate the validity of the method. The triple-band FSS using the improved SRR has a lot of reformative performances. It is shown that the reflection coefficients of triple-band FSS using the improved SRR are -37.6 dB, -13 dB, and -19.6 dB, respectively. On the other hand, it owns the stable frequency response characteristics in the 0°–60° range, which is beneficial to a large incidence angle. In addition, a high degree of miniaturization and the low loss characteristics are the another two significant advantages of this FSS. This triple-band FSS with improved SRR has potential applications in the terahertz frequency radio astronomy polarizer, beam splitter, mirror and resonator mirror, etc.
      通信作者: 刘海文, liuhaiwen@gmail.com
    • 基金项目: 国家自然科学基金(批准号: No. 61461020和U1431110)和江西省国际合作基金(批准号: 20133BDH80007和20132BDH80013)资助的课题.
      Corresponding author: Liu Hai-Wen, liuhaiwen@gmail.com
    • Funds: Project supported by the National Science Foundation of China, (Grant No. 61461020, U1431110), and the International Cooperation Funds and Science and Technology Innovation Team of Jiangxi Province of China (Grant Nos. 20133BDH80007, 20132BDH80013).
    [1]

    Raymond D, Robert C, Vincent F, Harold S G, Neil M 2011 IEEE Trans. Terahertz Sci. Technol. 1 450

    [2]

    Huang H Y, Ding S, Wang B Z, Zang R 2014 Chin. Phys. B 23 064101

    [3]

    Leng W X, Ge L N, Xu S S, Zhan H L, Zhao K 2014 Chin. Phys. B 23 107804

    [4]

    Li S S, Zhang H, Hou Y, Bai J J, Liu W W, Chang S J 2013 Applied Optics 52 3305

    [5]

    Carelli P, Chiarello F, Cibella S, Di G A, Leoni R, Ortolani M, Torrioli G 2012 J Infrared Milli Terahz Waves 33 505

    [6]

    Yuan C, Xu S L, Yao J Q, Zhao X L, Cao X L, Wu L 2014 Chin. Phys. B 23 018102

    [7]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [8]

    Wang W J, Wangle J F, Yan M B, Lu L, Ma H, Qu S B, Chen H Y, Xu C L 2014 Acta Phys. Sin. 63 174101 (in Chinese) [王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 2014 63 174101]

    [9]

    Goussetis G, Feresidis A P 2010 IET Microw. Antennas Propag. 4 1105

    [10]

    Campos A L P S, Segundo F C G D S, Manicoba R H C, Neto G A, Assuncao A G D 2012 Microwave Opt Technol Lett. 54 2321

    [11]

    Ohira M, Deguchi H, Tsuji M, Shigesawa H 2004 IEEE Trans. Antennas Propagat. 52 2925

    [12]

    Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 237302 (in Chinese) [王秀芝, 高劲松, 徐念喜 2013 62 237302]

    [13]

    Dubrovka R, Vazquez J, Parini C, Moore D 2006 IEE Proc. Microwaves Antenn. Propag 153 213

    [14]

    Costa F, Monorchio A, Manara G 2012 IEEE Antenn. Propag. Mag. 54 35

    [15]

    Claus J, Niels A M, Anders K 2009 Appl. Phys. Lett. 95 193108

    [16]

    Wang H Q 2008 Systems Engineering and Electronics 30 2054 (in Chinese) [王焕青 2008 系统工程与电子技术 30 2054]

    [17]

    Munk B(translated by Hou X Y) 2009 A Frequency Selective Surfaces Theory and Design(Beijing: Science Press) pp688-695 (in Chinese) [Munk B著 (侯新宇译) 2009 频率选择表面理论与设计(北京: 科学出版社)第 688–695 页]

    [18]

    Wu Z, Wu Z B 2005 Acta Electron. Sin. 33 517 (in Chinese) [武哲, 武振波 2005 电子学报 33 517]

    [19]

    Yan S, Vandenbosch G A E 2013 Appl. Phys. Lett. 102 103503

  • [1]

    Raymond D, Robert C, Vincent F, Harold S G, Neil M 2011 IEEE Trans. Terahertz Sci. Technol. 1 450

    [2]

    Huang H Y, Ding S, Wang B Z, Zang R 2014 Chin. Phys. B 23 064101

    [3]

    Leng W X, Ge L N, Xu S S, Zhan H L, Zhao K 2014 Chin. Phys. B 23 107804

    [4]

    Li S S, Zhang H, Hou Y, Bai J J, Liu W W, Chang S J 2013 Applied Optics 52 3305

    [5]

    Carelli P, Chiarello F, Cibella S, Di G A, Leoni R, Ortolani M, Torrioli G 2012 J Infrared Milli Terahz Waves 33 505

    [6]

    Yuan C, Xu S L, Yao J Q, Zhao X L, Cao X L, Wu L 2014 Chin. Phys. B 23 018102

    [7]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [8]

    Wang W J, Wangle J F, Yan M B, Lu L, Ma H, Qu S B, Chen H Y, Xu C L 2014 Acta Phys. Sin. 63 174101 (in Chinese) [王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 2014 63 174101]

    [9]

    Goussetis G, Feresidis A P 2010 IET Microw. Antennas Propag. 4 1105

    [10]

    Campos A L P S, Segundo F C G D S, Manicoba R H C, Neto G A, Assuncao A G D 2012 Microwave Opt Technol Lett. 54 2321

    [11]

    Ohira M, Deguchi H, Tsuji M, Shigesawa H 2004 IEEE Trans. Antennas Propagat. 52 2925

    [12]

    Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 237302 (in Chinese) [王秀芝, 高劲松, 徐念喜 2013 62 237302]

    [13]

    Dubrovka R, Vazquez J, Parini C, Moore D 2006 IEE Proc. Microwaves Antenn. Propag 153 213

    [14]

    Costa F, Monorchio A, Manara G 2012 IEEE Antenn. Propag. Mag. 54 35

    [15]

    Claus J, Niels A M, Anders K 2009 Appl. Phys. Lett. 95 193108

    [16]

    Wang H Q 2008 Systems Engineering and Electronics 30 2054 (in Chinese) [王焕青 2008 系统工程与电子技术 30 2054]

    [17]

    Munk B(translated by Hou X Y) 2009 A Frequency Selective Surfaces Theory and Design(Beijing: Science Press) pp688-695 (in Chinese) [Munk B著 (侯新宇译) 2009 频率选择表面理论与设计(北京: 科学出版社)第 688–695 页]

    [18]

    Wu Z, Wu Z B 2005 Acta Electron. Sin. 33 517 (in Chinese) [武哲, 武振波 2005 电子学报 33 517]

    [19]

    Yan S, Vandenbosch G A E 2013 Appl. Phys. Lett. 102 103503

  • [1] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面.  , 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [2] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面.  , 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [3] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器.  , 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [4] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [5] 阎昊岚, 程雅青, 王凯礼, 王雅昕, 陈洋玮, 袁秋林, 马恒. 烷基环己苯异硫氰酸液晶材料太赫兹波吸收.  , 2019, 68(11): 116102. doi: 10.7498/aps.68.20190209
    [6] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束.  , 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [7] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散.  , 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [8] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生.  , 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [9] 付亚男, 张新群, 赵国忠, 李永花, 于佳怡. 基于谐振环的太赫兹宽带偏振转换器件研究.  , 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [10] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元.  , 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [11] 郭畅, 张岩. 利用波矢滤波超表面实现超衍射成像.  , 2017, 66(14): 147804. doi: 10.7498/aps.66.147804
    [12] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器.  , 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [13] 兰峰, 高喜, 亓丽梅. 基于频率选择表面的双层改进型互补结构太赫兹带通滤波器研究.  , 2014, 63(10): 104209. doi: 10.7498/aps.63.104209
    [14] 夏步刚, 张德海, 孟进, 赵鑫. 毫米波二阶分形频率选择表面寄生谐振的抑制.  , 2013, 62(17): 174103. doi: 10.7498/aps.62.174103
    [15] 王秀芝, 高劲松, 徐念喜. Ku/Ka波段双通带频率选择表面设计研究.  , 2013, 62(16): 167307. doi: 10.7498/aps.62.167307
    [16] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构.  , 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [17] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究.  , 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [18] 李磊, 周庆莉, 施宇蕾, 赵冬梅, 张存林, 赵昆, 田璐, 赵卉, 宝日玛, 赵嵩卿. 在太赫兹波段的开口共振环的不同开口形状对透过率频谱的影响.  , 2011, 60(1): 019503. doi: 10.7498/aps.60.019503
    [19] 高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红. 二阶Y环频率选择表面的设计研究.  , 2010, 59(10): 7338-7343. doi: 10.7498/aps.59.7338
    [20] 张富利, 赵晓鹏. 谐振频率可调的环状开口谐振器结构及其效应.  , 2007, 56(8): 4661-4667. doi: 10.7498/aps.56.4661
计量
  • 文章访问数:  6821
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-22
  • 修回日期:  2015-03-23
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map