Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improvement of the output power of optical pumping THz lasers based on the theory of vibrational relaxation

Zhang Hui-Yun Liu Meng Zhang Yu-Ping He Zhi-Hong Shen Duan-Long Wu Zhi-Xin Yin Yi-Heng Li De-Hua

Citation:

Improvement of the output power of optical pumping THz lasers based on the theory of vibrational relaxation

Zhang Hui-Yun, Liu Meng, Zhang Yu-Ping, He Zhi-Hong, Shen Duan-Long, Wu Zhi-Xin, Yin Yi-Heng, Li De-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on the semiclassical density matrix theory and vibrational relaxation theory, the present paper studies the influences on optical pumping THz lasers output power due to adding an appropriate proportion of buffer gas and appropriately reducing the waveguide core diameter. Results prove that adding appropriate proportion of buffer gas or appropriately reducing the waveguide core diameter can increase the output of light intensity of THz laser. Optimizing the two parameters at the same time can further improve the efficiency of pumping laser energy into THz laser energy, extend the effective activation area of the working cavity, put off the appearance of the pumping saturation effect, and increase the output power of the THz lasers. This research may have a guiding significance for the THz optical pumping laser in improving energy conversion efficiency, and increasing the output power so as to bring about the miniaturization of THz optical pumping laser.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61001018), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2011FM009, ZR2012FM011), the Research Fund of Shandong University of Science and Technology (SDUST), China (Grant No. 2010KYJQ103), the SDUST Research Fund (Grant No. 2012KYTD103), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J11LG20), the Qingdao Science & Technology Project, China (Grant No. 11-2-4-4-(8)-jch), the Qingdao Economic & Technical Development Zone Science & Technology Project, China (Grant No. 2013-1-64), and the Shandong University of Science and Technology Foundation, China (Grant No. YCB120173).
    [1]

    Jiu Z X, Zuo D L, Miao L, Qi C C, Cheng Z H 2010 Chin. Phys. Lett. 27 24211

    [2]

    Jiu Z X, Zuo D L, Miao L, Cheng Z H 2010 Journal of Infrared Millimeter and Terahertz Waves 31 1422

    [3]

    Miao L, Zuo D L, Jiu Z X, Cheng Z H 2011 High Power Laser and Particle Beams 23 2565 (in Chinese) [苗亮, 左都罗, 纠智先, 程祖海 2011 强激光与粒子束 23 2565]

    [4]

    Mueller E R, Henschke R, Robotham W E 2007 Appl. Opt. 46 4907

    [5]

    Federici J F, Schulkin B, Huanget F 2005 Semicond. Sci. Technol. 20 S266

    [6]

    Fu S Y, Tian Z S, Yi F L J 2008 Harbin Institute of Technology 40 435 (in Chinese) [付石友, 田兆硕, 衣福龙 2008 哈尔滨工业大学学报 40 435]

    [7]

    Wu L, Ling F R, Liu J S 2009 Laser & Optoelectronics Progress 46 29 (in Chinese) [吴亮, 凌福日, 刘劲松 2009 激光与光电子学进展 46 29]

    [8]

    Thomas A, Detemple 1976 IEEE J. Quant. Electron. 12 40

    [9]

    Behn R, Kjelberg I, Morgan P D, Okada T, Siegrist M R 1983J. Appl. Phys. 54 2995

    [10]

    Behn R, Dupertuis R, Kjelberg M A, Krug I, Salito P, Siegrist S 1985 IEEE J. Quant. Electron. 21 1278

    [11]

    Hodges D T, Tucker J R, Hartwick T S 1976 Infrared Phys. 16 175

    [12]

    Mansfield D K, Horlbeck E, Bennett C L, Chouinard R 1985 International Journal of Infrared and Millimeter Waves 6 867

    [13]

    Chang T Y, Lin C 1976 J. Opt. Soc. Am. 66 362

    [14]

    He Z H, Yao J Q, Shi H F, Huang X, Luo X Z, Jiang S J, Wang P 2007 Acta. Phys. Sin. 56 5802 (in Chinese) [何志红, 姚建铨, 时华锋, 黄晓, 罗锡璋, 江绍基, 王鹏 2007 56 5802]

    [15]

    He Z H, Yao J Q, Shi H F, Huang X, Luo X Z, Jiang S J, Li J R, Wang P 2007 Acta. Phys. Sin. 56 6451 (in Chinese) [何志红, 姚建铨, 时华锋, 黄晓, 罗锡璋, 江绍基, 李建荣, 王鹏 2007 56 6451]

    [16]

    Zhang P, Jiang A J, Chen M N, Luo X Z, Zhang X 2004 Journal of Optoelectronics·Laser 15 1040 (in Chinese) [张萍, 蒋爱军, 陈曼娜, 罗锡璋, 张迅 2004 光电子·激光 15 1040]

    [17]

    Qin J Y, Zheng X S, Luo X Z, Huang X, Lin Y K 1998 IEEE Journal of Quantum Electronics 34 32

    [18]

    Liu Y, Xu J, Lai J Q, Xu X, Shen F, Wei Y Y, Huang M Z, Tang T, Gong Y B 2012 Chin. Phys. B 21 074202

    [19]

    Xie H Y, Wang L, Zhao L J, Zhu H L, Wang W 2007 Chin. Phys. 16 1459

    [20]

    Chang T Y, Lin C 1976 J. Opt Soc Am. 66 362

    [21]

    Redon M, Gastaud C, Fourrier M 1979 IEEE J. Q. E 15 412

    [22]

    Lawandy N M, Koepf G A 1980 Opt. Lett. 5 366

    [23]

    Schwartz R N, Slawsky Z I, Herzfeld K F 1952 J. Cherm. Phys. 20 1591

    [24]

    Frank I, Tanczos, 1956 J. Cherm. Phys. 25 439

    [25]

    Dickens P G, Ripamonti A 1961 Trans. Faraday Soc. 57 735

  • [1]

    Jiu Z X, Zuo D L, Miao L, Qi C C, Cheng Z H 2010 Chin. Phys. Lett. 27 24211

    [2]

    Jiu Z X, Zuo D L, Miao L, Cheng Z H 2010 Journal of Infrared Millimeter and Terahertz Waves 31 1422

    [3]

    Miao L, Zuo D L, Jiu Z X, Cheng Z H 2011 High Power Laser and Particle Beams 23 2565 (in Chinese) [苗亮, 左都罗, 纠智先, 程祖海 2011 强激光与粒子束 23 2565]

    [4]

    Mueller E R, Henschke R, Robotham W E 2007 Appl. Opt. 46 4907

    [5]

    Federici J F, Schulkin B, Huanget F 2005 Semicond. Sci. Technol. 20 S266

    [6]

    Fu S Y, Tian Z S, Yi F L J 2008 Harbin Institute of Technology 40 435 (in Chinese) [付石友, 田兆硕, 衣福龙 2008 哈尔滨工业大学学报 40 435]

    [7]

    Wu L, Ling F R, Liu J S 2009 Laser & Optoelectronics Progress 46 29 (in Chinese) [吴亮, 凌福日, 刘劲松 2009 激光与光电子学进展 46 29]

    [8]

    Thomas A, Detemple 1976 IEEE J. Quant. Electron. 12 40

    [9]

    Behn R, Kjelberg I, Morgan P D, Okada T, Siegrist M R 1983J. Appl. Phys. 54 2995

    [10]

    Behn R, Dupertuis R, Kjelberg M A, Krug I, Salito P, Siegrist S 1985 IEEE J. Quant. Electron. 21 1278

    [11]

    Hodges D T, Tucker J R, Hartwick T S 1976 Infrared Phys. 16 175

    [12]

    Mansfield D K, Horlbeck E, Bennett C L, Chouinard R 1985 International Journal of Infrared and Millimeter Waves 6 867

    [13]

    Chang T Y, Lin C 1976 J. Opt. Soc. Am. 66 362

    [14]

    He Z H, Yao J Q, Shi H F, Huang X, Luo X Z, Jiang S J, Wang P 2007 Acta. Phys. Sin. 56 5802 (in Chinese) [何志红, 姚建铨, 时华锋, 黄晓, 罗锡璋, 江绍基, 王鹏 2007 56 5802]

    [15]

    He Z H, Yao J Q, Shi H F, Huang X, Luo X Z, Jiang S J, Li J R, Wang P 2007 Acta. Phys. Sin. 56 6451 (in Chinese) [何志红, 姚建铨, 时华锋, 黄晓, 罗锡璋, 江绍基, 李建荣, 王鹏 2007 56 6451]

    [16]

    Zhang P, Jiang A J, Chen M N, Luo X Z, Zhang X 2004 Journal of Optoelectronics·Laser 15 1040 (in Chinese) [张萍, 蒋爱军, 陈曼娜, 罗锡璋, 张迅 2004 光电子·激光 15 1040]

    [17]

    Qin J Y, Zheng X S, Luo X Z, Huang X, Lin Y K 1998 IEEE Journal of Quantum Electronics 34 32

    [18]

    Liu Y, Xu J, Lai J Q, Xu X, Shen F, Wei Y Y, Huang M Z, Tang T, Gong Y B 2012 Chin. Phys. B 21 074202

    [19]

    Xie H Y, Wang L, Zhao L J, Zhu H L, Wang W 2007 Chin. Phys. 16 1459

    [20]

    Chang T Y, Lin C 1976 J. Opt Soc Am. 66 362

    [21]

    Redon M, Gastaud C, Fourrier M 1979 IEEE J. Q. E 15 412

    [22]

    Lawandy N M, Koepf G A 1980 Opt. Lett. 5 366

    [23]

    Schwartz R N, Slawsky Z I, Herzfeld K F 1952 J. Cherm. Phys. 20 1591

    [24]

    Frank I, Tanczos, 1956 J. Cherm. Phys. 25 439

    [25]

    Dickens P G, Ripamonti A 1961 Trans. Faraday Soc. 57 735

  • [1] Feng Long-Cheng, Du Chen, Yang Sheng-Xin, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Research on terahertz real-time near-field spectral imaging. Acta Physica Sinica, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [2] Liu Zi-Yu, Qi Li-Mei, Dao Ri-Na, Dai Lin-Lin, Wu Li-Qin. Beam steerable terahertz antenna based on VO2. Acta Physica Sinica, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [3] Hui Zhan-Qiang, Gao Li-Ming, Liu Rui-Hua, Han Dong-Dong, Wang Wei. Dual-core negative curvature fiber-based terahertz polarization beam splitter with ultra-low loss and wide bandwidth. Acta Physica Sinica, 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [4] Yan Zhi-Jin, Shi Wei. Radiation characteristics of terahertz GaAs photoconductive antenna arrays. Acta Physica Sinica, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [5] Guo Liang-Hao, Wang Shao-Meng, Yang Li-Xia, Wang Kai-Cheng, Ma Jia-Lu, Zhou Jun, Gong Yu-Bin. Weak resonance effects of THz wave transimission in nerve cell. Acta Physica Sinica, 2021, 70(24): 240301. doi: 10.7498/aps.70.20211677
    [6] Dual-core Negative Curvature Fiber-based Terahertz Polarization Beam Splitter with Ultra-low Loss and Wide Bandwidth. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211650
    [7] Feng Zheng, Wang Da-Cheng, Sun Song, Tan Wei. Spintronic terahertz emitter: Performance, manipulation, and applications. Acta Physica Sinica, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [8] Yang Yu-Lin, Bai Le-Le, Zhang Lu-Lu, He Jun, Wen Xin, Wang Jun-Min. Experimental investigation of spin noise spectroscopy of rubidium atomic ensemble. Acta Physica Sinica, 2020, 69(23): 233201. doi: 10.7498/aps.69.20201103
    [9] Zhang Yao, Sun Shuai, Yan Zhong-Bao, Zhang Guo, Shi Wei, Sheng Quan, Fang Qiang, Zhang Jun-Xiang, Shi Chao-Du, Zhang Gui-Zhong, Yao Jian-Quan. Design and coupling characteristics of terahertz dual-core anti-resonant fiber. Acta Physica Sinica, 2020, 69(20): 208703. doi: 10.7498/aps.69.20200662
    [10] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [11] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng. Ultrafast terahertz detectors. Acta Physica Sinica, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [12] Zhang Xue-Jin, Lu Yan-Qing, Chen Yan-Feng, Zhu Yong-Yuan, Zhu Shi-Ning. Terahertz surface polaritons. Acta Physica Sinica, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [13] Zhang Jing-Shui, Kong Ling-Qin, Dong Li-Quan, Liu Ming, Zuo Jian, Zhang Cun-Lin, Zhao Yue-Jin. Diffusion part in terahertz complementary metal oxide semiconductor transistor detector model. Acta Physica Sinica, 2017, 66(12): 127302. doi: 10.7498/aps.66.127302
    [14] Wang Jing-Li, Liu Yang, Zhong Kai. Dual-core terahertz polarization splitter based on porous fibers with near-tie units. Acta Physica Sinica, 2017, 66(2): 024209. doi: 10.7498/aps.66.024209
    [15] Zhang Hui-Yun, Liu Meng, Zhang Yu-Ping, Shen Duan-Long, Wu Zhi-Xin, Yin Yi-Heng, Li De-Hua. Research of continuous wave pumping waveguide to generate terahertz laser. Acta Physica Sinica, 2014, 63(2): 020702. doi: 10.7498/aps.63.020702
    [16] Li Shan-Shan, Chang Sheng-Jiang, Zhang Hao, Bai Jin-Jun, Liu Wei-Wei. A THz polarization splitter made from suspended dual-core porous fiber. Acta Physica Sinica, 2014, 63(11): 110706. doi: 10.7498/aps.63.110706
    [17] Dai Yu-Han, Chen Xiao-Lang, Zhao Qiang, Zhang Ji-Hua, Chen Hong-Wei, Yang Chuan-Ren. Tunable split ring resonators in terahertz band. Acta Physica Sinica, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [18] Jiang Zi-Wei, Bai Jin-Jun, Hou Yu, Wang Xiang-Hui, Chang Sheng-Jiang. Terahertz dual air core fiber directional coupler. Acta Physica Sinica, 2013, 62(2): 028702. doi: 10.7498/aps.62.028702
    [19] Han Yu, Yuan Xue-Song, Ma Chun-Yan, Yan Yang. Study of a gyrotron oscillator with corrugated interaction cavity. Acta Physica Sinica, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [20] Bai Jin-Jun, Wang Chang-Hui, Hou Yu, Fan Fei, Chang Sheng-Jiang. Terahertz dual-core photonic band-gap fiber directional coupler. Acta Physica Sinica, 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
Metrics
  • Abstract views:  6653
  • PDF Downloads:  486
  • Cited By: 0
Publishing process
  • Received Date:  29 September 2013
  • Accepted Date:  25 October 2013
  • Published Online:  05 January 2014

/

返回文章
返回
Baidu
map