-
For crystal materials, the grain boundary structure is complex, which is usually the place in which stress concentration and impurity accumulate. Grain boundary structure and movement have a great influence on the macroscopic properties of crystal materials, therefore, it is of great significance to study the microstructure of grain boundary. With the phase filed crystal approach, the structure of low-angle symmetric tilt grain boundary and dislocation motion at nanoscale are studied. The low-angle symmetric tilt grain boundary structure can be described by a dislocation model, in which the grain boundary can be regarded as consisting of a series of edge dislocations at a certain distance. For a relaxation process and applied stress process, the position change of dislocation motion at grain boundaries and the change of free energy density of the system are observed. Furthermore, we also analyze the influence of temperature on the grain boundary structure and the dislocation motion. In the relaxation process, the free energy of the crystal system is higher under high temperature conditions. The results show that the motion of dislocation pairs in the grains can consume the internal energy and release the distortion energy stored at the grain boundary, and thus making the system more stable and the energy reach the lowest value earlier. Simulation results show that the lower the temperature of the system, the faster the free energy density decreases, the faster the regular arrangement rate of atoms increases, the shorter the time required for the free energy density to reach a stable state becomes. And when the grain boundary reaches a steady state, the arrangement of the dislocations becomes more and more regular and arranges in a straight line. For an applied stress process, with the decrease of temperature, the time required for the first encounter of dislocation pairs and the time required for the formation of single crystal become longer, and it takes more time for the first encounter of dislocation pairs in crystals to disappear completely. Further studies also show that with the decrease of temperature, the free energy density exhibits a multi-stage ascending and descending process. The rising process of energy curve corresponds to the stage of dislocation climbing along the grain boundary, and the decline process corresponds to the stage of dislocation decomposition and encounter annihilation. At the same time, the dislocation pairs’ reaction becomes more complex. Finally, the dislocations annihilate with each other.
-
Keywords:
- phase field crystal /
- temperature /
- grain boundary /
- dislocation
[1] Paul S K 2018 Comput. Mater. Sci. 150 24Google Scholar
[2] Bobylev S V, Gutkin M Y, Ovid'Ko I A 2006 Phys. Solid State 48 1495Google Scholar
[3] Caturla M, Nieh T G, Stolken J S 2004 Appl. Phys. Lett. 84 598Google Scholar
[4] Peter S, Mikko H, Nikolas P 2009 Phys. Rev. E 80 046107Google Scholar
[5] Li X H, Wen X, Zhao H H, Ma Z Q, Yu L M, Li C, Liu C X, Guo Q Y, Liu Y C 2019 J. Alloys Compd. 779 175Google Scholar
[6] Chen Y Y, Hu Z P, Xu Y F, Wang J Y, Schützendübe P, Huang Y, Liu Y C, Wang Z M 2019 J. Mater. Sci. Technol. 35 512Google Scholar
[7] Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701Google Scholar
[8] Elder K R, Grant M 2004 Phys. Rev. E 70 051605Google Scholar
[9] Elder K R, Provatas N, Berry J, Stefanovic P 2007 Phys. Rev. B 75 064107Google Scholar
[10] Wang J, Yu L M, Huang Y, Li H J , Liu Y C 2019 Comput. Mater. Sci. 160 105Google Scholar
[11] Qi Y, Krajewski P E 2007 Acta Mater. 55 1555Google Scholar
[12] 郑晓娟, 赵宇宏, 侯华, 靳玉春, 马庆爽, 田晋忠 2017 中国有色金属学报 27 2098
Zheng X J, Zhao Y H, Hou H, Jin Y C, Ma Q S, Tian J Z 2017 Chin. J. Nonferrous Met. 27 2098
[13] Fan D, Chen L Q 1997 Acta Mater. 45 611Google Scholar
[14] 孙远洋, 赵宇宏, 侯华, 郑晓娟, 郭慧俊 2018 稀有金属材料与工程 47 3000
Sun Y Y, Zhao Y H, Hou H, Zheng X J, Guo H J 2018 Rare Metal. Mater. Eng. 47 3000
[15] 康永生, 赵宇宏, 侯华, 靳玉春, 陈利文 2016 65 188102Google Scholar
Kang Y S, Zhao Y H, Hou H, Jin Y C, Chen L W 2016 Acta Phys. Sin. 65 188102Google Scholar
[16] 王锟, 赵宇宏, 杨东然, 侯华, 王欣然, 田园 2015 稀有金属材料与工程 44 939
Wang K, Zhao Y H, Yang D R, Hou H, Wang X R, Tian Y 2015 Rare Metal. Mater. Eng. 44 939
[17] 赵宇宏 2010 材料相变过程微观组织模拟 (北京: 国防工业出版社) 第139页
Zhao Y H 2010 Simulation for the Materials Microstructure Evolution in Phase Transformation Process (Beijing: National Defense Industry Press) p139 (in Chinese)
[18] 孙远洋, 赵宇宏, 侯华, 靳玉春, 郑晓娟 2018 中国有色金属学报 28 71
Sun Y Y, Zhao Y H, Hou H, Jin Y C, Zheng X J 2018 Chin. J. Nonferrous Metal. 28 71
[19] 田晓林, 赵宇宏, 田晋忠, 侯华 2018 67 230201Google Scholar
Tian X L, Zhao Y H, Tian J Z, Hou H 2018 Acta Phys. Sin. 67 230201Google Scholar
[20] Zhao Y H, Tian X L, Zhao B J, Sun Y Y, Guo H J, Dong M Y, Liu H, Wang X J, Guo Z H, Umar A, Hou H 2018 Sci. Adv. Mater. 10 1793Google Scholar
[21] Fallah V, Stolle J, Ofori-Opoku N, Esmaeili S, Provatas N 2012 Phys. Rev. B 86 3209
[22] Fallah V, Ofori-Opoku N, Stolle J, Provatas N, Esmaeili S 2013 Acta Mater. 61 3653Google Scholar
[23] Wu K A, Voorhees P W 2012 Acta Mater. 60 407Google Scholar
[24] Yamanaka A, McReynolds K, Voorhees P W 2017 Acta Mater. 133 160Google Scholar
[25] Olmsted D L, Buta D, Adland A, Foiles S M, Asta M, Karma A 2011 Phys. Rev. Lett. 106 046101Google Scholar
[26] 高英俊, 秦河林, 周文权, 邓芊芊, 罗志荣, 黄创高 2015 64 106105Google Scholar
Gao Y J, Qin H L, Zhou W Q, Deng Q Q, Luo Z R, Huang C G 2015 Acta Phys. Sin. 64 106105Google Scholar
[27] Berry J, Elder K R, Grant M 2008 Phys. Rev. B 77 224114Google Scholar
[28] Chan V W L, Pisutha-Arnond N, Thornton K 2017 Comput. Mater. Sci. 135 205Google Scholar
[29] Asadi E, Zaeem M A 2015 JOM 67 186Google Scholar
[30] Tang S, Wang Z J, Guo Y L, Wang J C, Yu Y M, Zhou Y H 2012 Acta Mater. 60 5501Google Scholar
[31] Berry J, Grant M 2014 Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 89 062303Google Scholar
[32] Zhang W, Mi J 2016 IOP Conf. Ser.: Mater. Sci. Eng. 117 012056Google Scholar
[33] Hu S, Chen Z, Xi W, Peng Y Y 2017 J. Mater. Sci. 52 5641Google Scholar
[34] Hu S, Xi W, Chen Z, Wang S, Zhang T H 2017 Comput. Mater. Sci. 132 125Google Scholar
[35] Hu S, Chen Z, Peng Y Y, Liu Y J, Guo L Y 2016 Comput. Mater. Sci. 121 143Google Scholar
[36] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛 2017 66 216101Google Scholar
Gu J W, Wang J C, Wang Z J, Li J J, Guo C, Tang S 2017 Acta Phys. Sin. 66 216101Google Scholar
[37] Hirouchi T, Takaki T, Tomita Y 2010 Int. J. Mech. Sci. 52 309Google Scholar
[38] Guo H J, Zhao Y H, Sun Y Y, Tian J Z, Hou H, Qi K W, Tian X L 2019 Superlattices Microstruct. 129 163Google Scholar
[39] Zhao Y H, Deng S J, Liu H, Zhang J X, Guo Z H, Hou H 2018 Comput. Mater. Sci. 154 365Google Scholar
[40] Wen Z Q, Hou H, Tian J Z, Zhao Y H, Li H J, Han P D 2018 Intermetallics 92 15Google Scholar
[41] Wen Z Q, Zhao Y H, Hou H, Wang B, Han P D 2017 Mater. Des. 114 398Google Scholar
[42] Zhao Y H, Qi L, Jin Y C, Wang K, Tian J Z, Han P D 2015 J. Alloys Compd. 647 1104Google Scholar
[43] Tian J Z, Zhao Y H, Hou H, Han P D 2017 Solid State Commun. 268 44Google Scholar
[44] Hirouchi T, Takaki T, Tomita Y 2009 Comput. Mater. Sci. 44 1192Google Scholar
-
图 6 应力作用下r = –0.23时晶界位错运动模拟图 (a) n = 5500; (b) n = 10900; (c) n = 11350; (d) n = 13350; (e) n = 13850; (f) n = 24450
Figure 6. Simulation diagram of grain boundary dislocation motion under stress with r = –0.23: (a) n = 5500; (b) n = 10900; (c) n = 11350; (d) n = 13350; (e) n = 13850; (f) n = 24450.
图 7 应力作用下r = –0.25时晶界位错运动模拟图 (a) n = 11100; (b) n = 11550; (c) n = 13600; (d) n = 13850; (e) n = 14100; (f) n = 25150
Figure 7. Simulation diagram of grain boundary dislocation motion under stress with r = –0.25: (a) n = 11100; (b) n = 11550; (c) n = 13600; (d) n = 13850; (e) n = 14100; (f) n = 25150.
图 9 应力作用下r = –0.30时晶界位错运动模拟图 (a) n = 11300; (b) n = 12100; (c) n = 12500; (d) n = 39550; (e) n = 40100; (f) n = 76500
Figure 9. Simulation diagram of grain boundary dislocation motion under stress with r = –0.30: (a) n = 11300; (b) n = 12100; (c) n = 12500; (d) n = 39550; (e) n = 40100; (f) n = 76500.
图 8 应力作用下r = –0.28时晶界位错运动模拟图 (a) n = 11800; (b) n = 12050; (c) n = 13800; (d) n = 29050; (e) n = 33450; (f) n = 33700
Figure 8. Simulation diagram of grain boundary dislocation motion under stress with r = –0.28: (a) n = 11800; (b) n = 12050; (c) n = 13800; (d) n = 29050; (e) n = 33450; (f) n = 33700.
表 1 模拟所采用的参数
Table 1. Parameters used in the simulation.
方案 初始原子密度ρ0 位向差θ 温度相关参量r A 0.285 2.8° –0.23 B 0.285 2.8° –0.25 C 0.285 2.8° –0.28 D 0.285 2.8° –0.30 -
[1] Paul S K 2018 Comput. Mater. Sci. 150 24Google Scholar
[2] Bobylev S V, Gutkin M Y, Ovid'Ko I A 2006 Phys. Solid State 48 1495Google Scholar
[3] Caturla M, Nieh T G, Stolken J S 2004 Appl. Phys. Lett. 84 598Google Scholar
[4] Peter S, Mikko H, Nikolas P 2009 Phys. Rev. E 80 046107Google Scholar
[5] Li X H, Wen X, Zhao H H, Ma Z Q, Yu L M, Li C, Liu C X, Guo Q Y, Liu Y C 2019 J. Alloys Compd. 779 175Google Scholar
[6] Chen Y Y, Hu Z P, Xu Y F, Wang J Y, Schützendübe P, Huang Y, Liu Y C, Wang Z M 2019 J. Mater. Sci. Technol. 35 512Google Scholar
[7] Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701Google Scholar
[8] Elder K R, Grant M 2004 Phys. Rev. E 70 051605Google Scholar
[9] Elder K R, Provatas N, Berry J, Stefanovic P 2007 Phys. Rev. B 75 064107Google Scholar
[10] Wang J, Yu L M, Huang Y, Li H J , Liu Y C 2019 Comput. Mater. Sci. 160 105Google Scholar
[11] Qi Y, Krajewski P E 2007 Acta Mater. 55 1555Google Scholar
[12] 郑晓娟, 赵宇宏, 侯华, 靳玉春, 马庆爽, 田晋忠 2017 中国有色金属学报 27 2098
Zheng X J, Zhao Y H, Hou H, Jin Y C, Ma Q S, Tian J Z 2017 Chin. J. Nonferrous Met. 27 2098
[13] Fan D, Chen L Q 1997 Acta Mater. 45 611Google Scholar
[14] 孙远洋, 赵宇宏, 侯华, 郑晓娟, 郭慧俊 2018 稀有金属材料与工程 47 3000
Sun Y Y, Zhao Y H, Hou H, Zheng X J, Guo H J 2018 Rare Metal. Mater. Eng. 47 3000
[15] 康永生, 赵宇宏, 侯华, 靳玉春, 陈利文 2016 65 188102Google Scholar
Kang Y S, Zhao Y H, Hou H, Jin Y C, Chen L W 2016 Acta Phys. Sin. 65 188102Google Scholar
[16] 王锟, 赵宇宏, 杨东然, 侯华, 王欣然, 田园 2015 稀有金属材料与工程 44 939
Wang K, Zhao Y H, Yang D R, Hou H, Wang X R, Tian Y 2015 Rare Metal. Mater. Eng. 44 939
[17] 赵宇宏 2010 材料相变过程微观组织模拟 (北京: 国防工业出版社) 第139页
Zhao Y H 2010 Simulation for the Materials Microstructure Evolution in Phase Transformation Process (Beijing: National Defense Industry Press) p139 (in Chinese)
[18] 孙远洋, 赵宇宏, 侯华, 靳玉春, 郑晓娟 2018 中国有色金属学报 28 71
Sun Y Y, Zhao Y H, Hou H, Jin Y C, Zheng X J 2018 Chin. J. Nonferrous Metal. 28 71
[19] 田晓林, 赵宇宏, 田晋忠, 侯华 2018 67 230201Google Scholar
Tian X L, Zhao Y H, Tian J Z, Hou H 2018 Acta Phys. Sin. 67 230201Google Scholar
[20] Zhao Y H, Tian X L, Zhao B J, Sun Y Y, Guo H J, Dong M Y, Liu H, Wang X J, Guo Z H, Umar A, Hou H 2018 Sci. Adv. Mater. 10 1793Google Scholar
[21] Fallah V, Stolle J, Ofori-Opoku N, Esmaeili S, Provatas N 2012 Phys. Rev. B 86 3209
[22] Fallah V, Ofori-Opoku N, Stolle J, Provatas N, Esmaeili S 2013 Acta Mater. 61 3653Google Scholar
[23] Wu K A, Voorhees P W 2012 Acta Mater. 60 407Google Scholar
[24] Yamanaka A, McReynolds K, Voorhees P W 2017 Acta Mater. 133 160Google Scholar
[25] Olmsted D L, Buta D, Adland A, Foiles S M, Asta M, Karma A 2011 Phys. Rev. Lett. 106 046101Google Scholar
[26] 高英俊, 秦河林, 周文权, 邓芊芊, 罗志荣, 黄创高 2015 64 106105Google Scholar
Gao Y J, Qin H L, Zhou W Q, Deng Q Q, Luo Z R, Huang C G 2015 Acta Phys. Sin. 64 106105Google Scholar
[27] Berry J, Elder K R, Grant M 2008 Phys. Rev. B 77 224114Google Scholar
[28] Chan V W L, Pisutha-Arnond N, Thornton K 2017 Comput. Mater. Sci. 135 205Google Scholar
[29] Asadi E, Zaeem M A 2015 JOM 67 186Google Scholar
[30] Tang S, Wang Z J, Guo Y L, Wang J C, Yu Y M, Zhou Y H 2012 Acta Mater. 60 5501Google Scholar
[31] Berry J, Grant M 2014 Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 89 062303Google Scholar
[32] Zhang W, Mi J 2016 IOP Conf. Ser.: Mater. Sci. Eng. 117 012056Google Scholar
[33] Hu S, Chen Z, Xi W, Peng Y Y 2017 J. Mater. Sci. 52 5641Google Scholar
[34] Hu S, Xi W, Chen Z, Wang S, Zhang T H 2017 Comput. Mater. Sci. 132 125Google Scholar
[35] Hu S, Chen Z, Peng Y Y, Liu Y J, Guo L Y 2016 Comput. Mater. Sci. 121 143Google Scholar
[36] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛 2017 66 216101Google Scholar
Gu J W, Wang J C, Wang Z J, Li J J, Guo C, Tang S 2017 Acta Phys. Sin. 66 216101Google Scholar
[37] Hirouchi T, Takaki T, Tomita Y 2010 Int. J. Mech. Sci. 52 309Google Scholar
[38] Guo H J, Zhao Y H, Sun Y Y, Tian J Z, Hou H, Qi K W, Tian X L 2019 Superlattices Microstruct. 129 163Google Scholar
[39] Zhao Y H, Deng S J, Liu H, Zhang J X, Guo Z H, Hou H 2018 Comput. Mater. Sci. 154 365Google Scholar
[40] Wen Z Q, Hou H, Tian J Z, Zhao Y H, Li H J, Han P D 2018 Intermetallics 92 15Google Scholar
[41] Wen Z Q, Zhao Y H, Hou H, Wang B, Han P D 2017 Mater. Des. 114 398Google Scholar
[42] Zhao Y H, Qi L, Jin Y C, Wang K, Tian J Z, Han P D 2015 J. Alloys Compd. 647 1104Google Scholar
[43] Tian J Z, Zhao Y H, Hou H, Han P D 2017 Solid State Commun. 268 44Google Scholar
[44] Hirouchi T, Takaki T, Tomita Y 2009 Comput. Mater. Sci. 44 1192Google Scholar
Catalog
Metrics
- Abstract views: 10733
- PDF Downloads: 99
- Cited By: 0