-
Femtosecond laser ablation possesses a variety of applications due to its better control, high power density, smaller heat-affected zone, minimal collateral material damage, lower ablation thresholds, and excellent mechanical properties. The non-Fourier effect in heat conduction becomes significant when the heating time becomes extremely small. In order to analyze the femtosecond laser ablation process, a hyperbolic heat conduction model is established based on the dual-phase-lag model. Taken into account in the model are the effect of heat source, laser heating of the target, the evaporation and phase explosion of the target material, the formation and expansion of the plasma plume, and interaction of the plasma plume with the incoming laser. Temperature-dependent optical and thermophysical properties are also considered in the model due to the fact that the properties of the target will change over a wide range in the femtosecond laser ablation process. The effects of the plasma shielding, the ratio of the two delay times, and laser fluence are discussed and the effectiveness of the model is verified by comparing the simulation results with the experimental results. The results show that the plasma shielding has a great influence on the femtosecond laser ablation process, especially when the laser fluence is high. The ratio between the two delay times (the ratio B) has a great influence on the temperature characteristic and ablation characteristic in the femtosecond laser ablation process. The augment of the ratio B will increase the degree of thermal diffusion, which will lower down the surface temperature and accelerate the ablation rate after the ablation has begun. The ablation mechanism of femtosecond laser ablation is dominated by phase explosion. The heat affected zone of femtosecond laser ablation is small, and the heat affected zone is less affected by laser fluence. The comparison between the simulation results and the experimental results in the literature shows that the model based on the dual-phase-lag model can effectively simulate the femtosecond laser ablation process.
-
Keywords:
- femtosecond laser ablation /
- dual-phase-lag model /
- hyperbolic heat conduction equation /
- plasma shielding
[1] Shirk D, Molian P A 1998 J. Laser Appl. 10 18
Google Scholar
[2] Mao Y D, Xu M T 2015 Sci. China: Technol. Sci. 58 638
Google Scholar
[3] Amoruso S, Ausanio G, Bruzzese R, Vitiello M, Wang X 2005 Phys. Rev. B 71 033406
[4] Tsakiris N, Anoop K K, Ausanio G, Gill-Comeau M, Bruzzese R, Amoruso S, Lewis L J 2014 J. Appl. Phys. 115 243301
Google Scholar
[5] 王文亭, 胡冰, 王明伟 2013 62 060601
Google Scholar
Wang W T, Hu B, Wang M W 2013 Acta Phys. Sin. 62 060601
Google Scholar
[6] Liebig C M, Srisungsitthisunti P, Weiner A M, Xu X 2010 Appl. Phys. A 101 487
[7] Herman P R, Oettl A, Chen K P, Marjoribanks R S 1999 Proceedings of SPIE - The International Society for Optical Engineering California, USA, January 4, 1999 p148
[8] Derrien T J, Krüger J, Itina T E, Höhm S, Rosenfeld A, Bonse J 2014 Opt. Express 117 77
[9] 谭胜, 吴建军, 张宇, 程玉强, 李健, 欧阳 2018 推进技术 39 2415
Tan S, Wu J J, Zhang Y, Cheng Y Q, Li J, Ou Y 2018 J. Propuls. Technol. 39 2415
[10] Piñon V, Fotakis C, Nicolas G, Anglos D 2008 Spectrochim. Acta Part B 63 1006
Google Scholar
[11] Miyamoto I, Horn A, Gottmann J, Wortmann D, Yoshino F 2007 J. Laser Micro/Nanoeng. 2 57
Google Scholar
[12] Zhang Y, Tzou D Y, Chen J K 2009 High-Power and Femtosecond Lasers: Properties, Materials and Applications (1st Ed.) (New York: Nova Science Publisher) pp1–11
[13] Eidmann K, Meyer-ter-Vehn J, Schlegel T, Hüller S 2000 Phys. Rev. E 62 1202
Google Scholar
[14] Vidal F, Johnstion T W, Laville S, Barthélemy, Chaker M, Drogoff B L, Margot J, Sabsabi M 2001 Phys. Rev. Lett. 86 2573
Google Scholar
[15] Ding P J, Hu B T, Li Y H 2011 NDT E Int. 29 53
[16] Perez D, Lewis L J 2003 Phys. Rev. B 67 184102
Google Scholar
[17] Nedialkov N N, Imamova S E, Atanasov P A, Berger P, Dausinger F 2005 Appl. Surf. Sci. 247 243
Google Scholar
[18] Liu X, Zhou W, Chen C, Zhao L, Zhang Y 2008 J. Mat. Proc. Technol. 203 202
Google Scholar
[19] Chichkov B N, Momma C, Nolte S, von Alvensleben F, Tünnermann A 1996 Appl. Phys. A 63 109
Google Scholar
[20] Hu W, Shin Y C, King G 2010 Appl. Phys. A 98 407
[21] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农 2013 62 210601
Google Scholar
Wang W T, Zhang N, Wang M W, He Y H, Yang J J, Zhu X N 2013 Acta Phys. Sin. 62 210601
Google Scholar
[22] Wu B, Shin Y C 2007 Appl. Surf. Sci. 253 4079
Google Scholar
[23] Wu B, Shin Y C 2009 Appl. Surf. Sci. 255 4996
Google Scholar
[24] Qiu T Q, Tien C L 1994 Int. J. Heat Mass Transf. 37 2789
Google Scholar
[25] Tzou D Y, Chen J K, Beraun J E 2005 J. Therm. Stress. 28 563
Google Scholar
[26] Singh N 2010 Int. J. Mod. Phys. B 24 1141
Google Scholar
[27] Qiu T Q, Tien C L 1993 J. Heat Tranf. 115 835
Google Scholar
[28] Chen J K, Beraun J E 2001 Numer. Heat Transf. Part A: Appl. 40 1
[29] Jiang L, Tsai H L 2005 J. Heat Transf. 127 1167
Google Scholar
[30] Chen J K, Tzou D Y, Beraun J E 2006 Int. J. Heat Mass Transf. 49 307
Google Scholar
[31] Carpene E 2006 Phys. Rev. B 74 024301
[32] Fang R, Wei H, Li Z, Zhang D 2012 Solid State Commun. 152 108
Google Scholar
[33] Zhang J, Chen Y, Hu M, Chen X 2015 J. Appl. Phys. 117 063104
Google Scholar
[34] Shin T, Teitelbaum S W, Wolfson J, Kandyla M, Nelson K A 2015 J. Chem. Phys. 143 194705
Google Scholar
[35] Sonntag S, Roth J, Gaehler F, Trebin H R 2009 Appl. Surf. Sci. 255 9742
Google Scholar
[36] Ji P, Zhang Y 2017 Appl. Phys. A 123 671
Google Scholar
[37] Colombier J P, Combis P, Bonneau F, Le Harzic R, Audouard E 2005 Phys. Rev. B 71 165406
Google Scholar
[38] Zhao X, Shin Y C 2012 J. Phys. D: Appl. Phys. 45 105201
Google Scholar
[39] Taylor L L, Scott R E, Qiao J 2018 Opt. Mater. Express 8 648
Google Scholar
[40] Fann W S, Storz R, Tom H W K, Bokor J 1992 Phys. Rev. Lett. 68 2834
Google Scholar
[41] Groeneveld R H M, Sprik R, Lagendijk A 1995 Phys. Rev. B 51 11433
Google Scholar
[42] Schmidt V, Husinsky W, Betz G 2002 Appl. Surf. Sci. 197 145
[43] Byskov-Nielsen J, Savolainen J M, Christensen M S, Balling P 2011 Appl. Phys. A 103 447
Google Scholar
[44] Christensen B H, Vestentoft K, Balling P 2007 Appl. Surf. Sci. 253 6347
Google Scholar
[45] Abdelmalek A, Bedrane Z, Amara E 2018 J. Phys. Conf. Ser. 987 012012
Google Scholar
[46] Qi H T, Xu H Y, Guo X W 2013 Comput. Math. Appl. 66 824
Google Scholar
[47] Rahideh H, Malekzadeh P, Haghighi M R G 2011 ISRN Mech. Eng. 321605
[48] Catteneo C 1958 Compte Rendus 247 431
[49] Vernotte P 1958 Compte Rendus 246 3154
[50] Vick B, Ozisik M N 1983 J. Heat Transf. 105 902
Google Scholar
[51] Jiang F, Liu D, Zhou J 2002 Microsc. Thermophys. Eng. 6 331
[52] Bag S, Sahu P K 2013 Proceeding of the 22th National and 11th International ISHMT-ASME Heat and Mass Transfer Conference IIT Kharagpur, India, December 28–31, 2013
[53] Zhang L, Shang X 2015 Int. J. Heat Mass Transf. 85 772
Google Scholar
[54] Singh S, Kumar S 2014 Int. J. Therm. Sci. 86 12
Google Scholar
[55] Li J, Wang B 2018 Mech. Adv. Mat. Struct. (online)
Google Scholar
[56] Tzou D Y 1995 J. Heat Transf. 117 8
Google Scholar
[57] 周凤玺, 李世荣 2006 兰州大学学报 42 55
Google Scholar
Zhou F, Li S 2006 J. Lanzhou Univ. 42 55
Google Scholar
[58] Tzou D Y 1995 J. Thermophys. Heat Transf. 9 686
Google Scholar
[59] Ho J R, Kuo C P, Jiaung W S 2003 Int. J. Heat Mass Transf. 46 55
Google Scholar
[60] Ghazanfarian J, Abbassi A 2009 Int. J. Heat Mass Transf. 52 3706
Google Scholar
[61] Ghazanfarian J, Shomali Z 2012 Int. J. Heat Mass Transf. 55 6231
Google Scholar
[62] Askarizadeh H, Ahmadikia H 2014 Heat Mass Transf. 50 1673
Google Scholar
[63] Liu K C, Chen Y S 2016 Int. J. Therm. Sci. 103 1
Google Scholar
[64] Zhang Y, Chen B, Li D 2017 Int. J. Heat Mass Transf. 108 1428
Google Scholar
[65] Vadasz P 2005 Int. J. Heat Mass Transf. 48 2822
Google Scholar
[66] Tzou D Y 2015 Macro- to Microscale Heat Transfer: the Lagging Behavior (2nd Ed.) (West Sussex: Wiley) pp201–592
[67] Tzou D Y, Chiu K S 2001 Int. J. Heat Mass Transf. 44 1725
Google Scholar
[68] Lee Y M, Tsai T W 2007 Int. Commun. Heat Mass Transf. 34 45
Google Scholar
[69] Ramadan K, Tyfour W R, Al-Nimr M A 2009 J. Heat Transf. 131 111301
Google Scholar
[70] Kumar S, Bag S, Baruah M 2016 J. Laser Appl. 28 032008
Google Scholar
[71] Kumar D, Rai K N 2017 J. Therm. Biol. 67 49
Google Scholar
[72] Ji C, Dai W, Sun Z 2018 J. Sci. Comput. 75 1307
Google Scholar
[73] Marla D, Bhandarkar U V, Joshi S S 2011 J. Appl. Phys. 109 021101
Google Scholar
[74] 谭新玉, 张端明, 李智华, 关丽, 李莉 2005 54 3915
Google Scholar
Tan X Y, Zhang D M, Li Z H, Guan L, Li L 2005 Acta Phys. Sin. 54 3915
Google Scholar
[75] Peterlongo A, Miotello A, Kelly R 1994 Phys. Rev. E 50 4716
Google Scholar
[76] Gragossian A, Tavassoli S H, Shokri B 2009 J. Appl. Phys. 105 103304
Google Scholar
[77] Marla D, Bhandarkar U V, Joshi S S 2014 Appl. Phys. A 116 273
Google Scholar
[78] Singh R K, Narayan J 1990 Phys. Rev. B 41 8843
Google Scholar
[79] Chen F F 1985 Introduction to Plasma Physics and Controlled Fusion (Volume 1: Plasma Physics) (2nd Ed.) (New York: Plenum Press) p1
[80] Garrelie F, Aubreton J, Catherinot A 1998 J. Appl. Phys. 83 5075
Google Scholar
[81] Ho C Y, Powell R W, Liley P E 1972 J. Phys. Chem. Ref. Data 1 279
Google Scholar
[82] Brandt R, Neuer G 2007 Int. J. Thermophys. 28 1429
Google Scholar
[83] Lide D R, Haynes W M 2010 CRC Handbook of Chemistry and Physics (90th Ed.) (Florida: CRC Press) pp764–2169
[84] Clair G, L’Hermite D 2011 J. Appl. Phys. 110 083307
Google Scholar
[85] Singh K S, Sharma A K 2016 J. Appl. Phys. 119 183301
Google Scholar
[86] 陶文铨 2001 数值传热学 (第二版) (西安: 西安交通大学出版社) 第63页
Tao W Q 2001 Numerical Heat Transfer (2st Ed.) (Xi’an: Xi’an Jiaotong University Press) p63 (in Chinese)
[87] 张代贤 2014 博士学位论文 (长沙: 国防科技大学)
Zhang D X 2014 Ph.D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[88] 蒋方明, 刘登瀛 2001 上海理工大学学报 23 197
Google Scholar
Jiang F M, Liu D Y 2001 J. Univ. Shanghai Sci. Tech. 23 197
Google Scholar
[89] Valette S, Harzic R Le, Huot N, Audouard E, Fortunier R 2005 Appl. Surf. Sci. 247 238
Google Scholar
[90] Davydov R V, Antonov V I 2016 J. Phys. Conf. Ser. 769 012060
Google Scholar
[91] Hashida M, Semerok A, Gobert O, Petite G, Wagner J F 2001 Proceedings of SPIE St. Petersburg, Russian Federation, June 26, 2001 p178
-
表 1 模型中用到的Cu的参数
Table 1. Parameters of Cu used in the model.
-
[1] Shirk D, Molian P A 1998 J. Laser Appl. 10 18
Google Scholar
[2] Mao Y D, Xu M T 2015 Sci. China: Technol. Sci. 58 638
Google Scholar
[3] Amoruso S, Ausanio G, Bruzzese R, Vitiello M, Wang X 2005 Phys. Rev. B 71 033406
[4] Tsakiris N, Anoop K K, Ausanio G, Gill-Comeau M, Bruzzese R, Amoruso S, Lewis L J 2014 J. Appl. Phys. 115 243301
Google Scholar
[5] 王文亭, 胡冰, 王明伟 2013 62 060601
Google Scholar
Wang W T, Hu B, Wang M W 2013 Acta Phys. Sin. 62 060601
Google Scholar
[6] Liebig C M, Srisungsitthisunti P, Weiner A M, Xu X 2010 Appl. Phys. A 101 487
[7] Herman P R, Oettl A, Chen K P, Marjoribanks R S 1999 Proceedings of SPIE - The International Society for Optical Engineering California, USA, January 4, 1999 p148
[8] Derrien T J, Krüger J, Itina T E, Höhm S, Rosenfeld A, Bonse J 2014 Opt. Express 117 77
[9] 谭胜, 吴建军, 张宇, 程玉强, 李健, 欧阳 2018 推进技术 39 2415
Tan S, Wu J J, Zhang Y, Cheng Y Q, Li J, Ou Y 2018 J. Propuls. Technol. 39 2415
[10] Piñon V, Fotakis C, Nicolas G, Anglos D 2008 Spectrochim. Acta Part B 63 1006
Google Scholar
[11] Miyamoto I, Horn A, Gottmann J, Wortmann D, Yoshino F 2007 J. Laser Micro/Nanoeng. 2 57
Google Scholar
[12] Zhang Y, Tzou D Y, Chen J K 2009 High-Power and Femtosecond Lasers: Properties, Materials and Applications (1st Ed.) (New York: Nova Science Publisher) pp1–11
[13] Eidmann K, Meyer-ter-Vehn J, Schlegel T, Hüller S 2000 Phys. Rev. E 62 1202
Google Scholar
[14] Vidal F, Johnstion T W, Laville S, Barthélemy, Chaker M, Drogoff B L, Margot J, Sabsabi M 2001 Phys. Rev. Lett. 86 2573
Google Scholar
[15] Ding P J, Hu B T, Li Y H 2011 NDT E Int. 29 53
[16] Perez D, Lewis L J 2003 Phys. Rev. B 67 184102
Google Scholar
[17] Nedialkov N N, Imamova S E, Atanasov P A, Berger P, Dausinger F 2005 Appl. Surf. Sci. 247 243
Google Scholar
[18] Liu X, Zhou W, Chen C, Zhao L, Zhang Y 2008 J. Mat. Proc. Technol. 203 202
Google Scholar
[19] Chichkov B N, Momma C, Nolte S, von Alvensleben F, Tünnermann A 1996 Appl. Phys. A 63 109
Google Scholar
[20] Hu W, Shin Y C, King G 2010 Appl. Phys. A 98 407
[21] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农 2013 62 210601
Google Scholar
Wang W T, Zhang N, Wang M W, He Y H, Yang J J, Zhu X N 2013 Acta Phys. Sin. 62 210601
Google Scholar
[22] Wu B, Shin Y C 2007 Appl. Surf. Sci. 253 4079
Google Scholar
[23] Wu B, Shin Y C 2009 Appl. Surf. Sci. 255 4996
Google Scholar
[24] Qiu T Q, Tien C L 1994 Int. J. Heat Mass Transf. 37 2789
Google Scholar
[25] Tzou D Y, Chen J K, Beraun J E 2005 J. Therm. Stress. 28 563
Google Scholar
[26] Singh N 2010 Int. J. Mod. Phys. B 24 1141
Google Scholar
[27] Qiu T Q, Tien C L 1993 J. Heat Tranf. 115 835
Google Scholar
[28] Chen J K, Beraun J E 2001 Numer. Heat Transf. Part A: Appl. 40 1
[29] Jiang L, Tsai H L 2005 J. Heat Transf. 127 1167
Google Scholar
[30] Chen J K, Tzou D Y, Beraun J E 2006 Int. J. Heat Mass Transf. 49 307
Google Scholar
[31] Carpene E 2006 Phys. Rev. B 74 024301
[32] Fang R, Wei H, Li Z, Zhang D 2012 Solid State Commun. 152 108
Google Scholar
[33] Zhang J, Chen Y, Hu M, Chen X 2015 J. Appl. Phys. 117 063104
Google Scholar
[34] Shin T, Teitelbaum S W, Wolfson J, Kandyla M, Nelson K A 2015 J. Chem. Phys. 143 194705
Google Scholar
[35] Sonntag S, Roth J, Gaehler F, Trebin H R 2009 Appl. Surf. Sci. 255 9742
Google Scholar
[36] Ji P, Zhang Y 2017 Appl. Phys. A 123 671
Google Scholar
[37] Colombier J P, Combis P, Bonneau F, Le Harzic R, Audouard E 2005 Phys. Rev. B 71 165406
Google Scholar
[38] Zhao X, Shin Y C 2012 J. Phys. D: Appl. Phys. 45 105201
Google Scholar
[39] Taylor L L, Scott R E, Qiao J 2018 Opt. Mater. Express 8 648
Google Scholar
[40] Fann W S, Storz R, Tom H W K, Bokor J 1992 Phys. Rev. Lett. 68 2834
Google Scholar
[41] Groeneveld R H M, Sprik R, Lagendijk A 1995 Phys. Rev. B 51 11433
Google Scholar
[42] Schmidt V, Husinsky W, Betz G 2002 Appl. Surf. Sci. 197 145
[43] Byskov-Nielsen J, Savolainen J M, Christensen M S, Balling P 2011 Appl. Phys. A 103 447
Google Scholar
[44] Christensen B H, Vestentoft K, Balling P 2007 Appl. Surf. Sci. 253 6347
Google Scholar
[45] Abdelmalek A, Bedrane Z, Amara E 2018 J. Phys. Conf. Ser. 987 012012
Google Scholar
[46] Qi H T, Xu H Y, Guo X W 2013 Comput. Math. Appl. 66 824
Google Scholar
[47] Rahideh H, Malekzadeh P, Haghighi M R G 2011 ISRN Mech. Eng. 321605
[48] Catteneo C 1958 Compte Rendus 247 431
[49] Vernotte P 1958 Compte Rendus 246 3154
[50] Vick B, Ozisik M N 1983 J. Heat Transf. 105 902
Google Scholar
[51] Jiang F, Liu D, Zhou J 2002 Microsc. Thermophys. Eng. 6 331
[52] Bag S, Sahu P K 2013 Proceeding of the 22th National and 11th International ISHMT-ASME Heat and Mass Transfer Conference IIT Kharagpur, India, December 28–31, 2013
[53] Zhang L, Shang X 2015 Int. J. Heat Mass Transf. 85 772
Google Scholar
[54] Singh S, Kumar S 2014 Int. J. Therm. Sci. 86 12
Google Scholar
[55] Li J, Wang B 2018 Mech. Adv. Mat. Struct. (online)
Google Scholar
[56] Tzou D Y 1995 J. Heat Transf. 117 8
Google Scholar
[57] 周凤玺, 李世荣 2006 兰州大学学报 42 55
Google Scholar
Zhou F, Li S 2006 J. Lanzhou Univ. 42 55
Google Scholar
[58] Tzou D Y 1995 J. Thermophys. Heat Transf. 9 686
Google Scholar
[59] Ho J R, Kuo C P, Jiaung W S 2003 Int. J. Heat Mass Transf. 46 55
Google Scholar
[60] Ghazanfarian J, Abbassi A 2009 Int. J. Heat Mass Transf. 52 3706
Google Scholar
[61] Ghazanfarian J, Shomali Z 2012 Int. J. Heat Mass Transf. 55 6231
Google Scholar
[62] Askarizadeh H, Ahmadikia H 2014 Heat Mass Transf. 50 1673
Google Scholar
[63] Liu K C, Chen Y S 2016 Int. J. Therm. Sci. 103 1
Google Scholar
[64] Zhang Y, Chen B, Li D 2017 Int. J. Heat Mass Transf. 108 1428
Google Scholar
[65] Vadasz P 2005 Int. J. Heat Mass Transf. 48 2822
Google Scholar
[66] Tzou D Y 2015 Macro- to Microscale Heat Transfer: the Lagging Behavior (2nd Ed.) (West Sussex: Wiley) pp201–592
[67] Tzou D Y, Chiu K S 2001 Int. J. Heat Mass Transf. 44 1725
Google Scholar
[68] Lee Y M, Tsai T W 2007 Int. Commun. Heat Mass Transf. 34 45
Google Scholar
[69] Ramadan K, Tyfour W R, Al-Nimr M A 2009 J. Heat Transf. 131 111301
Google Scholar
[70] Kumar S, Bag S, Baruah M 2016 J. Laser Appl. 28 032008
Google Scholar
[71] Kumar D, Rai K N 2017 J. Therm. Biol. 67 49
Google Scholar
[72] Ji C, Dai W, Sun Z 2018 J. Sci. Comput. 75 1307
Google Scholar
[73] Marla D, Bhandarkar U V, Joshi S S 2011 J. Appl. Phys. 109 021101
Google Scholar
[74] 谭新玉, 张端明, 李智华, 关丽, 李莉 2005 54 3915
Google Scholar
Tan X Y, Zhang D M, Li Z H, Guan L, Li L 2005 Acta Phys. Sin. 54 3915
Google Scholar
[75] Peterlongo A, Miotello A, Kelly R 1994 Phys. Rev. E 50 4716
Google Scholar
[76] Gragossian A, Tavassoli S H, Shokri B 2009 J. Appl. Phys. 105 103304
Google Scholar
[77] Marla D, Bhandarkar U V, Joshi S S 2014 Appl. Phys. A 116 273
Google Scholar
[78] Singh R K, Narayan J 1990 Phys. Rev. B 41 8843
Google Scholar
[79] Chen F F 1985 Introduction to Plasma Physics and Controlled Fusion (Volume 1: Plasma Physics) (2nd Ed.) (New York: Plenum Press) p1
[80] Garrelie F, Aubreton J, Catherinot A 1998 J. Appl. Phys. 83 5075
Google Scholar
[81] Ho C Y, Powell R W, Liley P E 1972 J. Phys. Chem. Ref. Data 1 279
Google Scholar
[82] Brandt R, Neuer G 2007 Int. J. Thermophys. 28 1429
Google Scholar
[83] Lide D R, Haynes W M 2010 CRC Handbook of Chemistry and Physics (90th Ed.) (Florida: CRC Press) pp764–2169
[84] Clair G, L’Hermite D 2011 J. Appl. Phys. 110 083307
Google Scholar
[85] Singh K S, Sharma A K 2016 J. Appl. Phys. 119 183301
Google Scholar
[86] 陶文铨 2001 数值传热学 (第二版) (西安: 西安交通大学出版社) 第63页
Tao W Q 2001 Numerical Heat Transfer (2st Ed.) (Xi’an: Xi’an Jiaotong University Press) p63 (in Chinese)
[87] 张代贤 2014 博士学位论文 (长沙: 国防科技大学)
Zhang D X 2014 Ph.D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[88] 蒋方明, 刘登瀛 2001 上海理工大学学报 23 197
Google Scholar
Jiang F M, Liu D Y 2001 J. Univ. Shanghai Sci. Tech. 23 197
Google Scholar
[89] Valette S, Harzic R Le, Huot N, Audouard E, Fortunier R 2005 Appl. Surf. Sci. 247 238
Google Scholar
[90] Davydov R V, Antonov V I 2016 J. Phys. Conf. Ser. 769 012060
Google Scholar
[91] Hashida M, Semerok A, Gobert O, Petite G, Wagner J F 2001 Proceedings of SPIE St. Petersburg, Russian Federation, June 26, 2001 p178
Catalog
Metrics
- Abstract views: 9971
- PDF Downloads: 137
- Cited By: 0