Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Continuous variable polarization entanglement in microwave domain

Luo Jun-Wen Wu De-Wei Li Xiang Zhu Hao-Nan Wei Tian-Li

Citation:

Continuous variable polarization entanglement in microwave domain

Luo Jun-Wen, Wu De-Wei, Li Xiang, Zhu Hao-Nan, Wei Tian-Li
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • As a widely utilized information carrier, polarization microwave shows plenty of merits. Quantum microwave is booming gradually due to the development of superconducting technology, which makes it a promising potential to apply quantum entanglement to polarization microwave. In this paper, we introduce the concept of continuous variable polarization entanglement. Meanwhile, a scheme of polarization entanglement in microwave domain is proposed and simulated. The detail derivations are given and discussed. Polarization entangled microwaves are prepared by combining quadrature entangled signals and strong coherent signals on polarization beam splitters, and quadrature entangled signals are prepared by utilizing Josephson mixer. In order to probe the polarization entanglement between output signals, inseparability of Stokes vectors $I({\hat S_1},{\hat S_2})$ and $I({\hat S_2},{\hat S_3})$, is analyzed in 100 MHz operation bandwidth of Josephson mixer. The relation between inseparability I and squeezing degree r and between inseparability I and amplitude ratio Q are analyzed respectively. The results show that $I({\hat S_1},{\hat S_2})$ is sensitive to the variation of Q, while $I({\hat S_2},{\hat S_3})$ is sensitive to the change of r. The physical reasons for these results are explored and discussed. Apart from these, $I({\hat S_1},{\hat S_2})$ remains its value above 1 under the condition in this paper, but on the contrary, $I({\hat S_2},{\hat S_3})$ keeps its value well below 1. It proves that ${\hat S_2}$ and ${\hat S_3}$ of Stokes vectors are inseparable from each other, thus output signals ${\hat E_a}$ and ${\hat E_b}$ of our scheme exhibit bipartite entanglement. The best entanglement appears nearly at about 70 MHz, at this point the minimum $I({\hat S_2},{\hat S_3})$ value is 0.25.
      Corresponding author: Wu De-Wei, wudewei74609@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61573372, 61603413).
    [1]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777Google Scholar

    [2]

    Liu C C, Wang D, Sun W Y, Ye L 2017 Quantum Inf. Process. 16 219Google Scholar

    [3]

    Ourjoumtsev A 2010 Nat. Photon. 4 136Google Scholar

    [4]

    Bowen W P, Treps N, Schnabel R, Ralph T C, Lam P K 2003 J. Opt. B: Quantum Semiclassical Opt. 5 s467Google Scholar

    [5]

    Zhou L, Ou-Yang Y, Wang L, Sheng Y B 2017 Quantum Inf. Process. 16 151Google Scholar

    [6]

    Bowen W P, Treps N, Schnabel R, Lam P K 2002 Phys. Rev. Lett. 89 253601Google Scholar

    [7]

    Korolkova N, Leuchs G, Loudon R, Ralph T C, Silberhorn C 2002 Phys. Rev. A 65 052306Google Scholar

    [8]

    Guo J, Cai C X, Ma L, Liu K, Sun H X, Gao J R 2017 Sci. Rep. 7 4434Google Scholar

    [9]

    吴量, 刘艳红, 邓瑞婕, 闫智辉, 贾晓军 2017 光学学报 5 0527001

    Wu L, Liu Y H, Deng R J, Yan Z H, Jia X J 2017 Acta Opt. Sin. 5 0527001

    [10]

    Wu L, Yan Z H, Liu Y H, Deng R J, Jia X J, Xie C D, Peng K C 2016 Appl. Phys. Lett. 108 161102Google Scholar

    [11]

    周瑶瑶, 蔚娟, 闫智辉, 贾晓军 2018 光学学报 7 0727001

    Zhou Y Y, Yu J, Yan Z H, Jia X J 2018 Acta Opt. Sin. 7 0727001

    [12]

    Chen Y F, Hover D, Sendelbach S, Maurer L N 2011 Phys. Rev. Lett. 107 217401Google Scholar

    [13]

    Hofheinz M, Huard B, Portier F 2016 C. R. Phys. 17 679Google Scholar

    [14]

    Flurin E, Roch N, Mallet F, Devoret M H, Huard B 2012 Phys. Rev. Lett. 109 183901Google Scholar

    [15]

    Roch N, Flurin E, Nguyen F, Morfin P, Campagne-Ibarcq P, Devoret M H, Huard B 2012 Phys. Rev. Lett. 108 147701Google Scholar

    [16]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015 Phys. Rev. Lett. 114 090503Google Scholar

    [17]

    Robson B A 1974 The Theory of Polarization Phenomena (Oxford: Clarendon)

    [18]

    Christopher S R 1998 Radio Sci. 33 1617Google Scholar

    [19]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722Google Scholar

    [20]

    Flurin E 2014 Ph. D. Dissertation (Berkeley: University of California)

    [21]

    Sneep J G, Verhoeven C J M 1990 IEEE J. Solid-State Circuits 25 692Google Scholar

  • 图 1  两组分极化纠缠光场生成及探测原理图(OPA, 光参量放大器; BS, 分束器; PBS, 极化分束器; D, 探测器)

    Figure 1.  Scheme of preparation and measurement towards bipartite polarization entangled optical fields. OPA, optical parametric amplifier; BS, beam splitter; PBS, polarization beam splitter; D, detector.

    图 2  二组分极化纠缠微波方案示意图(D, 探测器; 方案整体工作温度为0.5 mK)

    Figure 2.  Schematic of bipartite polarization entangled microwave. D, detector. Overall operation temperature of the proposal is 0.5 mK

    图 3  ${{\hat{E}}_{a{\rm{H}}}}$, ${{\hat{E}}_{b{\rm{H}}}}$的正交分量间的时域关联 (a)振幅分量XH; (b)相位分量YH

    Figure 3.  Quadrature components correlations of ${{\hat{E}}_{a{\rm{H}}}}$ and ${{\hat{E}}_{b{\rm{H}}}}$ in time domain: (a) Amplitude component XH; (b) phase component YH

    图 4  合成信号传输过程电场状态(a)和矢端轨迹(b)

    Figure 4.  Electric field state (a) and vector end trajectory (b) of combined signal in transmission.

    图 5  ${{\hat{E}}_a}$, ${{\hat{E}}_b}$对应斯托克斯参量的起伏关系

    Figure 5.  Fluctuations correlation of corresponding Stokes vectors between ${{\hat{E}}_a}$ and ${{\hat{E}}_b}$.

    图 6  不可分度I与压缩度r的关系  (a) $I\left( {\hat {{S_1}}, \hat {{S_2}}} \right)$; (b) $I\left( {\hat {{S_2}}, \hat {{S_3}}} \right)$

    Figure 6.  Relations of inseparability I and squeezing degree r : (a) $I\left( {\widehat {{S_1}}, \hat {{S_2}}} \right)$; (b) $I\left( {\hat {{S_2}}, \hat {{S_3}}} \right)$.

    图 7  不可分度I与振幅比值Q的关系 (a) $I\left( {\hat {{S_1}}, \hat {{S_2}}} \right)$; (b) $I\left( {\hat {{S_2}}, \hat {{S_3}}} \right)$.

    Figure 7.  Relations of inseparability I and amplitude ratio Q : (a) $I\left( {\hat {{S_1}}, \hat {{S_2}}} \right)$; (b) $I\left( {\hat {{S_2}}, \hat {{S_3}}} \right)$.

    表 1  方案部分参数

    Table 1.  Part of the parameters in the scheme.

    参数
    名称
    输入信号
    频率/GHz
    输入信号
    振幅
    压缩参量 r极化分量
    振幅比值 Q
    参数值5125
    DownLoad: CSV
    Baidu
  • [1]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777Google Scholar

    [2]

    Liu C C, Wang D, Sun W Y, Ye L 2017 Quantum Inf. Process. 16 219Google Scholar

    [3]

    Ourjoumtsev A 2010 Nat. Photon. 4 136Google Scholar

    [4]

    Bowen W P, Treps N, Schnabel R, Ralph T C, Lam P K 2003 J. Opt. B: Quantum Semiclassical Opt. 5 s467Google Scholar

    [5]

    Zhou L, Ou-Yang Y, Wang L, Sheng Y B 2017 Quantum Inf. Process. 16 151Google Scholar

    [6]

    Bowen W P, Treps N, Schnabel R, Lam P K 2002 Phys. Rev. Lett. 89 253601Google Scholar

    [7]

    Korolkova N, Leuchs G, Loudon R, Ralph T C, Silberhorn C 2002 Phys. Rev. A 65 052306Google Scholar

    [8]

    Guo J, Cai C X, Ma L, Liu K, Sun H X, Gao J R 2017 Sci. Rep. 7 4434Google Scholar

    [9]

    吴量, 刘艳红, 邓瑞婕, 闫智辉, 贾晓军 2017 光学学报 5 0527001

    Wu L, Liu Y H, Deng R J, Yan Z H, Jia X J 2017 Acta Opt. Sin. 5 0527001

    [10]

    Wu L, Yan Z H, Liu Y H, Deng R J, Jia X J, Xie C D, Peng K C 2016 Appl. Phys. Lett. 108 161102Google Scholar

    [11]

    周瑶瑶, 蔚娟, 闫智辉, 贾晓军 2018 光学学报 7 0727001

    Zhou Y Y, Yu J, Yan Z H, Jia X J 2018 Acta Opt. Sin. 7 0727001

    [12]

    Chen Y F, Hover D, Sendelbach S, Maurer L N 2011 Phys. Rev. Lett. 107 217401Google Scholar

    [13]

    Hofheinz M, Huard B, Portier F 2016 C. R. Phys. 17 679Google Scholar

    [14]

    Flurin E, Roch N, Mallet F, Devoret M H, Huard B 2012 Phys. Rev. Lett. 109 183901Google Scholar

    [15]

    Roch N, Flurin E, Nguyen F, Morfin P, Campagne-Ibarcq P, Devoret M H, Huard B 2012 Phys. Rev. Lett. 108 147701Google Scholar

    [16]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015 Phys. Rev. Lett. 114 090503Google Scholar

    [17]

    Robson B A 1974 The Theory of Polarization Phenomena (Oxford: Clarendon)

    [18]

    Christopher S R 1998 Radio Sci. 33 1617Google Scholar

    [19]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722Google Scholar

    [20]

    Flurin E 2014 Ph. D. Dissertation (Berkeley: University of California)

    [21]

    Sneep J G, Verhoeven C J M 1990 IEEE J. Solid-State Circuits 25 692Google Scholar

Metrics
  • Abstract views:  7325
  • PDF Downloads:  58
  • Cited By: 0
Publishing process
  • Received Date:  26 October 2018
  • Accepted Date:  04 December 2018
  • Available Online:  01 March 2019
  • Published Online:  20 March 2019

/

返回文章
返回
Baidu
map