-
In recent years, the solution-processed organic-inorganic perovskite solar cells have attracted considerable attention because of their advantages of high energy conversion efficiency, low cost, and easily processing. Organometallic halide perovskite solar cells have gradually demonstrated particular superior properties in energy field due to their excellent photoelectric properties. This has been triggered by the unprecedented increase in its overall power conversion efficiency reaching 23% in just a few years, and it is becoming a direct competitor against the existing leading technology silicon. In this paper, 5-AVA-doped organometal halide perovskite films, (5-AVA)0.05(MA)0.95PbI3 and (5-AVA)0.05(MA)0.95PbI3/Spiro-OMeTAD, are prepared by the two-step method. The generation and recombination mechanism of charge carriers in two kinds of film samples are discussed in detail. The bivalent band structure of perovskite film material CH3NH3PbI3 is determined by ultraviolet-visible absorption spectra of perovskite film (5-AVA)0.05(MA)0.95PbI3 and (5-AVA)0.05(MA)0.95PbI3/Spiro-OMeTAD. We investigate the photocarrier dynamics and band filling effects in these two organometal halide perovskite films by using femtosecond transient absorption spectroscopy. For (5-AVA)0.05(MA)0.95PbI3, the photoinduced bleach recovery at 760 nm reveals that band-edge recombination follows second-order kinetics, indicating that the dominant relaxation pathway is via the recombination of free electrons and holes. With regard to the perovskite film (5-AVA)0.05(MA)0.95PbI3 and (5-AVA)0.05(MA)0.95PbI3/Spiro-OMeTAD, the signal is photoinduced absorption from 550 nm to 700 nm. As the delay time increases, the electrons and holes are recombined, which results in a red shift of absorption spectrum in (5-AVA)0.05(MA)0.95PbI3. This can be referred to as Moss-Burstein band filling model. In contrast, the electrons and holes of (5-AVA)0.05(MA)0.95PbI3/Spiro-OMeTAD perovskite film sample are separated after photoexcitation. The holes rapidly transfer to the hole transport layer of Spiro-OMeTAD. It will lead to an increase in sample absorbance and a rapid recovery of bleaching signals. Consequently, electron-hole recombination is no longer a dominant pathway to the relaxation of photocarriers and the band filling effect is not significant in the composite film. Our findings provide a valuable insight into the understanding of the charge carrier dynamics and spectral band filling in mixed perovskites. These results conduce to the understanding of the intrinsic photo-physics of semiconducting organometal halide perovskites with direct implications for photovoltaic and optoelectronic applications, and provide a reference for the future research of perovskite solar cells.
-
Keywords:
- organometal halide perovskites /
- femtosecond transient absorption spectroscopy /
- recombination of free electron and hole /
- band filling
[1] Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 4 1764
[2] Lin Q, Armin A, Nagiri R C R, Burn P L, Meredith P 2015 Nature Photon. 9 106
[3] Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956
[4] Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396
[5] Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeerudding S M, Tress W, Abate A, Hagfeldt A, Gratzel M 2016 Energy Environ. Sci. 9 1989
[6] Singh S P, Nagarjuna P 2014 Dalton Trans. 43 5247
[7] Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y B, Spiccia L 2014 Angew. Chem. Int. Ed. 126 1
[8] Juarez-Perez E J, Wu M, Fabregat-Santiago F, Lakus-Wollny K, Mankel E, Mayer T, Jaegermann W, Mora-Sero I 2014 J. Phys. Chem. Lett. 5 680
[9] Chen H, Pan X, Liu W, Cai M, Kou D, Huo Z, Fang X, Dai S 2013 Chem. Commun. 49 7277
[10] Lv S, Han L, Xiao J, Zhu L, Shi J, Wei H, Xu Y, Dong J, Xu X, Li D, Wang S, Luo Y, Meng Q, Li X 2014 Chem. Commun. 50 6931
[11] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M, Park N G 2012 Sci. Rep. 2 591
[12] Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542
[13] Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2014 J. Am. Chem. Soc. 136 11610
[14] Deschler F, Price M, Pathak S, Klintberg L E, Jarausch D D, Higler R, Huttner S, Leijtens T, Stranks S D, Snaith H J, Atature M, Phillips R T, Friend R H 2014 J. Phys. Chem. Lett. 5 1421
[15] Wehrenfennig C, Liu M, Snaith H J, Johnston M B, Herz L M 2014 J. Phys. Chem. Lett. 5 1300
[16] Saba M, Cadelano M, Marongiu D, Chen F, Sarritzu V, Sestu N, Figus C, Aresti M, Piras R, Lehmann A G, Cannas C, Musinu A, Quochi F, Mura A, Bongiovanni G 2014 Nature Commun. 5 5049
[17] Manser J S, Kamat P V 2014 Nature Photon. 8 737
[18] Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Gratzel M, Moser J E 2014 Nature Photon. 8 250
[19] Wu X, Trinh M T, Niesner D, Zhu H, Norman Z, Owen J S, Yaffe O, Kudisch B J, Zhu X Y 2015 J. Am. Chem. Soc. 137 2089
[20] Yan H J, Ku Z L, Hu X F, Zhao W Y, Zhong M J, Zhu Q B, Lin X, Jin Z M, Ma G H 2018 Chin. Phys. Lett. 35 028401
[21] Yan H J, An B L, Fan Z F, Zhu X Y, Lin X, Jin Z M, Ma G H 2016 Appl. Phys. A 122 414
[22] Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C 2013 Science 342 344
[23] Guo Z, Wan Y, Yang M, Jordan S, Zhu K, Huang L 2017 Science 356 6333
[24] Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Gratzel M, Han H 2014 Science 345 295
[25] Ghanassi M, Schanne-Klein M C, Hache F, Ekimov A I, Ricard D, Flytzanis C 1993 Appl. Phys. Lett. 62 78
[26] Burstein E 1954 Phys. Rev. 93 632
[27] Moss T S 1954 Proc. Phys. Soc. B 67 775
[28] Kamat P V, Dimitrijevic N M, Nozik A J 1989 J. Phys. Chem. 93 2873
[29] Kawamura K, Maekawa K, Yanagi H, Hirano M, Hosono H 2003 Thin Solid Films 445 182
[30] Hickey S G, Riley D J, Tull E J 2000 J. Phys. Chem. B 104 7623
[31] Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Gratzel M, Mhaisalkar S, Sum T C 2014 Nature Mater. 13 476
[32] Giorgi G, Fujisawa J, Segawa H, Yamashita K 2013 J. Phys. Chem. Lett. 4 4213
-
[1] Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 4 1764
[2] Lin Q, Armin A, Nagiri R C R, Burn P L, Meredith P 2015 Nature Photon. 9 106
[3] Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956
[4] Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396
[5] Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeerudding S M, Tress W, Abate A, Hagfeldt A, Gratzel M 2016 Energy Environ. Sci. 9 1989
[6] Singh S P, Nagarjuna P 2014 Dalton Trans. 43 5247
[7] Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y B, Spiccia L 2014 Angew. Chem. Int. Ed. 126 1
[8] Juarez-Perez E J, Wu M, Fabregat-Santiago F, Lakus-Wollny K, Mankel E, Mayer T, Jaegermann W, Mora-Sero I 2014 J. Phys. Chem. Lett. 5 680
[9] Chen H, Pan X, Liu W, Cai M, Kou D, Huo Z, Fang X, Dai S 2013 Chem. Commun. 49 7277
[10] Lv S, Han L, Xiao J, Zhu L, Shi J, Wei H, Xu Y, Dong J, Xu X, Li D, Wang S, Luo Y, Meng Q, Li X 2014 Chem. Commun. 50 6931
[11] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M, Park N G 2012 Sci. Rep. 2 591
[12] Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542
[13] Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2014 J. Am. Chem. Soc. 136 11610
[14] Deschler F, Price M, Pathak S, Klintberg L E, Jarausch D D, Higler R, Huttner S, Leijtens T, Stranks S D, Snaith H J, Atature M, Phillips R T, Friend R H 2014 J. Phys. Chem. Lett. 5 1421
[15] Wehrenfennig C, Liu M, Snaith H J, Johnston M B, Herz L M 2014 J. Phys. Chem. Lett. 5 1300
[16] Saba M, Cadelano M, Marongiu D, Chen F, Sarritzu V, Sestu N, Figus C, Aresti M, Piras R, Lehmann A G, Cannas C, Musinu A, Quochi F, Mura A, Bongiovanni G 2014 Nature Commun. 5 5049
[17] Manser J S, Kamat P V 2014 Nature Photon. 8 737
[18] Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Gratzel M, Moser J E 2014 Nature Photon. 8 250
[19] Wu X, Trinh M T, Niesner D, Zhu H, Norman Z, Owen J S, Yaffe O, Kudisch B J, Zhu X Y 2015 J. Am. Chem. Soc. 137 2089
[20] Yan H J, Ku Z L, Hu X F, Zhao W Y, Zhong M J, Zhu Q B, Lin X, Jin Z M, Ma G H 2018 Chin. Phys. Lett. 35 028401
[21] Yan H J, An B L, Fan Z F, Zhu X Y, Lin X, Jin Z M, Ma G H 2016 Appl. Phys. A 122 414
[22] Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C 2013 Science 342 344
[23] Guo Z, Wan Y, Yang M, Jordan S, Zhu K, Huang L 2017 Science 356 6333
[24] Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Gratzel M, Han H 2014 Science 345 295
[25] Ghanassi M, Schanne-Klein M C, Hache F, Ekimov A I, Ricard D, Flytzanis C 1993 Appl. Phys. Lett. 62 78
[26] Burstein E 1954 Phys. Rev. 93 632
[27] Moss T S 1954 Proc. Phys. Soc. B 67 775
[28] Kamat P V, Dimitrijevic N M, Nozik A J 1989 J. Phys. Chem. 93 2873
[29] Kawamura K, Maekawa K, Yanagi H, Hirano M, Hosono H 2003 Thin Solid Films 445 182
[30] Hickey S G, Riley D J, Tull E J 2000 J. Phys. Chem. B 104 7623
[31] Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Gratzel M, Mhaisalkar S, Sum T C 2014 Nature Mater. 13 476
[32] Giorgi G, Fujisawa J, Segawa H, Yamashita K 2013 J. Phys. Chem. Lett. 4 4213
Catalog
Metrics
- Abstract views: 7669
- PDF Downloads: 183
- Cited By: 0