搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机-无机杂化钙钛矿材料的本征稳定性

张钰 周欢萍

引用本文:
Citation:

有机-无机杂化钙钛矿材料的本征稳定性

张钰, 周欢萍

Intrinsic stability of organic-inorganic hybrid perovskite

Zhang Yu, Zhou Huan-Ping
PDF
HTML
导出引用
  • 有机-无机杂化钙钛矿太阳能电池的光电转换效率已逾 24%, 效率的飞速提升加之可低成本溶液法制备的市场优势, 使人们越来越期待钙钛矿太阳能电池的商业化. 目前钙钛矿太阳能电池商业化所面临最大的障碍是材料乃至器件的长期不稳定性, 这使其无法在使用寿命上与已商品化的硅基等太阳能电池匹敌. 本文从化学不稳定性和相不稳定性两个层面剖析了有机-无机杂化钙钛矿材料本征不稳定性的问题, 并从组分设计及制备工艺等角度给出了提高钙钛矿太阳能电池器件稳定性的相关建议.
    The power conversion efficiency of organic-inorganic hybrid perovskite solar cell has exceeded 24%. The rapid increase in efficiency coupled with its cost-effective fabrication has attracted tremendous attention toward the commercialization of perovskite solar cells. The biggest challenge that hinders the commercialization of perovskite solar cells is the long-term instability of materials and the corresponding devices, which cannot compete with other commercialized solar cells, such as Si cells, in terms of lifetime. The intrinsic instability of perovskite material itself is the most critical challenge faced by researchers. In this study, we discuss the intrinsic instability of organic-inorganic hybrid perovskite materials from the aspects of both chemical instability and phase instability. Suggestions for improving the stability of perovskite solar cell are provided from the perspective of composition design and fabrication process.
      通信作者: 周欢萍, happy_zhou@pku.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51722201, 51672008)资助的课题.
      Corresponding author: Zhou Huan-Ping, happy_zhou@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51722201, 51672008).
    [1]

    Chapin D M, Fuller C, Pearson G 1954 J. Appl. Phys. 25 676Google Scholar

    [2]

    Kaelin M, Rudmann D, Tiwari A 2004 Sol. Energy 77 749Google Scholar

    [3]

    Wang M, Chamberland N, Breau L, Moser J E, HumphryBaker R, Marsan B, Zakeeruddin S M, Grätzel M 2010 Nat. Chem. 2 385Google Scholar

    [4]

    Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542Google Scholar

    [5]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [6]

    The National Renewable Energy Laboratory http://www.nrel.gov/ [2019-03-10]

    [7]

    Burschka J, Pellet N, Moon S J, HumphryBaker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar

    [8]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [9]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [10]

    Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Grätzel M, Seok S I 2013 J. Am. Chem. Soc. 135 19087Google Scholar

    [11]

    Wang D L, Cui H J, Hou G J, Zhu Z G, Yan Q B, Su G 2016 Sci. Rep. 6 18922Google Scholar

    [12]

    Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D'Haen J, D'Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E 2015 Adv. Energy Mater. 5 1500477Google Scholar

    [13]

    Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885Google Scholar

    [14]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [15]

    Kim H S, Seo J Y, Park N G 2016 ChemSusChem 9 2528Google Scholar

    [16]

    Supasai T, Rujisamphan N, Ullrich K, Chemseddine A, Dittrich T 2013 Appl. Phys. Lett. 103 183906Google Scholar

    [17]

    张翱, 陈云琳, 闫君, 张春秀 2018 67 106701Google Scholar

    Zhang A, Chen Y L, Yan J, Zhang C X 2018 Acta Phys. Sin. 67 106701Google Scholar

    [18]

    TurrenCruz S H, Hagfeldt A, Saliba M 2018 Science 362 449Google Scholar

    [19]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar

    [20]

    Lee J W, Seol D J, Cho A N, Park N G 2014 Adv. Mater. 26 4991Google Scholar

    [21]

    Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D 2016 J. Phys. Chem. Lett. 7 746Google Scholar

    [22]

    Zhao B, Jin S F, Huang S, Liu N, Ma J Y, Xue D J, Han Q, Ding J, Ge Q Q, Feng Y 2018 J. Am. Chem. Soc. 140 11716Google Scholar

    [23]

    Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J 2018 Nat. Commun. 9 2225Google Scholar

    [24]

    Luo P, Xia W, Zhou S, Sun L, Cheng J, Xu C, Lu Y 2016 J. Phys. Chem. Lett. 7 3603Google Scholar

    [25]

    Xue J, Lee J W, Dai Z, Wang R, Nuryyeva S, Liao M E, Chang S Y, Meng L, Meng D, Sun P 2018 Joule 2 1866Google Scholar

    [26]

    Zhou N, Shen Y, Zhang Y, Xu Z, Zheng G, Li L, Chen Q, Zhou H 2017 Small 13 1700484Google Scholar

    [27]

    Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, Haque S A 2015 Angew. Chem. Int. Edit. 54 8208Google Scholar

    [28]

    Wang S, Jiang Y, JuarezPerez E J, Ono L K, Qi Y 2017 Nat. Energy 2 16195Google Scholar

    [29]

    Raga S R, Jung M C, Lee M V, Leyden M R, Kato Y, Qi Y 2015 Chem. Mat. 27 1597Google Scholar

    [30]

    Li Y, Xu X, Wang C, Ecker B, Yang J, Huang J, Gao Y 2017 J. Phys. Chem. C 121 3904Google Scholar

    [31]

    Philippe B, Jacobsson T J, CorreaBaena J P, Jena N K, Banerjee A, Chakraborty S, Cappel U B, Ahuja R, Hagfeldt A, Odelius M 2017 J. Phys. Chem. C 121 26655Google Scholar

    [32]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S 2015 Science 350 1222Google Scholar

    [33]

    Xie H, Liu X, Lyu L, Niu D, Wang Q, Huang J, Gao Y 2016 J. Phys. Chem. C 120 215

    [34]

    Zhang W, Pathak S, Sakai N, Stergiopoulos T, Nayak P K, Noel N K, Haghighirad A A, Burlakov V M, Sadhanala A, Li W 2015 Nat. Commun. 6 10030Google Scholar

    [35]

    Liu Z, Hu J, Jiao H, Li L, Zheng G, Chen Y, Huang Y, Zhang Q, Shen C, Chen Q 2017 Adv. Mater. 29 1606774Google Scholar

    [36]

    Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L 2019 Science 363 265Google Scholar

    [37]

    Christians J A, Miranda Herrera P A, Kamat P V 2015 J. Am. Chem. Soc. 137 1530Google Scholar

    [38]

    Niu G, Guo X, Wang L 2015 J. Mater. Chem. A 3 8970Google Scholar

    [39]

    Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M, Walsh A 2014 Nano Lett. 14 2584Google Scholar

    [40]

    Chen J, Wang Y, Gan L, He Y, Li H, Zhai T 2017 Angew. Chem. Int. Edit. 56 14893Google Scholar

    [41]

    Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P 2015 Science 349 1518Google Scholar

    [42]

    Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G 2016 Chem. Mat. 28 2852Google Scholar

    [43]

    Zhang X, Ren X, Liu B, Munir R, Zhu X, Yang D, Li J, Liu Y, Smilgies D M, Li R, Yang Z, Niu T, Wang X, Amassian A, Zhao K, Liu S 2017 Energy Environ. Sci. 10 2095Google Scholar

    [44]

    Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Karunadasa H I 2014 Angew. Chem. 126 11414Google Scholar

    [45]

    Grancini G, RoldánCarmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, de Angelis F, Graetzel M 2017 Nat. Commun. 8 15684Google Scholar

    [46]

    Li P, Zhang Y, Liang C, Xing G, Liu X, Li F, Liu X, Hu X, Shao G, Song Y 2018 Adv. Mater. 30 1805323Google Scholar

    [47]

    Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q 2016 Nat. Commun. 7 10228Google Scholar

    [48]

    Yang S, Wang Y, Liu P, Cheng Y B, Zhao H J, Yang H G 2016 Nat. Energy 1 15016Google Scholar

    [49]

    Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar

    [50]

    Yan Y, Yin WJ, Shi T, Meng W, Feng C 2016 Organic-Inorganic Halide Perovskite Photovoltaics (Switzerland: Springer) pp79-105

    [51]

    Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano Lett. 14 6281Google Scholar

    [52]

    Buin A, Comin R, Xu J, Ip A H, Sargent E H 2015 Chem. Mat. 27 4405Google Scholar

    [53]

    Park B W, Seok S I 2019 Adv. Mater. 31 1805337Google Scholar

    [54]

    李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生 2018 67 158801Google Scholar

    Li S H, Li H T, Jiang Y X, Tu L M, Li W B, Pan L, Yang S E, Chen Y S 2018 Acta Phys. Sin. 67 158801Google Scholar

    [55]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H 2017 Science 356 1376Google Scholar

    [56]

    Chen Y H, Li N X, Wang L G, Li L, Xu Z Q, Jiao H Y, Liu P F, Zhu C, Zai H C, Sun M Z, Zou W, Zhang S, Xing G C, Liu X F, Wang J P, Li D D, Huang B L, Chen Q, Zhou H P 2019 Nat. Commun. 10 1112Google Scholar

    [57]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, CorreaBaena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206Google Scholar

    [58]

    Wang R, Xue J, Meng L, Lee J W, Zhao Z, Sun P, Cai L, Huang T, Wang Z, Wang Z K 2019 Joule 3

    [59]

    Lee J W, Yu H, Lee K, Bae S, Kim J, Han G R, Hwang D, Kim S K, Jang J 2019 J. Am. Chem. Soc. 141 5808Google Scholar

    [60]

    Ohmann R, Ono L K, Kim H S, Lin H, Lee M V, Li Y, Park N G, Qi Y 2015 J. Am. Chem. Soc. 137 16049Google Scholar

    [61]

    Rothmann M U, Li W, Zhu Y, Bach U, Spiccia L, Etheridge J, Cheng Y B 2017 Nat. Commun. 8 14547Google Scholar

    [62]

    Liu Y T, Collins L, Proksch R, Kim S, Watson B R, Doughty B, Calhoun T R, Ahmadi M, Ievlev A V, Jesse S, Retterer S T, Belianiov A, Xiao K, Huang J S, Sumpter B G, Kalinin S V, Hu B, Ovchinnikova O S 2018 Nat. Mater. 17 1013Google Scholar

    [63]

    Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A 2016 Energy Environ. Sci. 9 1752Google Scholar

    [64]

    Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, Yang Y 2014 Nano Lett. 14 4158Google Scholar

    [65]

    Shao Y, Xiao Z, Bi C, Yuan Y, Huang J 2014 Nat. Commun. 5 5784Google Scholar

    [66]

    Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng X C, Huang J 2017 Nat. Energy 2 17102Google Scholar

    [67]

    Yang S, Dai J, Yu Z, Shao Y, Zhou Y, Xiao X, Zeng X C, Huang J 2019 J. Am. Chem. Soc. 141 5781Google Scholar

    [68]

    Tan H, Jain A, Voznyy O, Lan X Z, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [69]

    Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H, Stranks S D 2018 Nature 555 497Google Scholar

    [70]

    Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N 2016 Adv. Mater. 28 9986Google Scholar

    [71]

    Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photon. 13 460Google Scholar

    [72]

    Bi E, Chen H, Xie F, Wu Y, Chen W, Su Y, Islam A, Grätzel M, Yang X, Han L 2017 Nat. Commun. 8 15330Google Scholar

    [73]

    Eames C, Frost J M, Barnes P R, O’regan B C, Walsh A, Islam M S 2015 Nat. Commun. 6 7497Google Scholar

    [74]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar

    [75]

    van Reenen S, Kemerink M, Snaith H J 2015 J. Phys. Chem. Lett. 6 3808Google Scholar

    [76]

    Liu L, Huang S, Lu Y, Liu P, Zhao Y, Shi C, Zhang S, Wu J, Zhong H, Sui M 2018 Adv. Mater. 30 1800544Google Scholar

    [77]

    Li Z, Xiao C, Yang Y, Harvey S P, Kim D H, Christians J A, Yang M, Schulz P, Nanayakkara S U, Jiang C S 2017 Energy Environ. Sci. 10 1234Google Scholar

    [78]

    Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358Google Scholar

    [79]

    Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, de Marco N, Zhao H, Sun P, Huang Y 2018 Nat. Commun. 9 3021Google Scholar

    [80]

    Goldschmidt V, Videnskaps-Akad S, Oslo I 1926 Mat. Nat. Kl8

    [81]

    Li Z, Yang M, Park J S, Wei S H, Berry J J, Zhu K 2016 Chem. Mat. 28 284

    [82]

    Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Grätzel M, de Angelis F 2014 Nano Lett. 14 3608Google Scholar

    [83]

    Poglitsch A, Weber D 1987 J. Chem. Phys. 87 6373Google Scholar

    [84]

    Christians J A, Schulz P, Tinkham J S, Schloemer T H, Harvey S P, de Villers B J T, Sellinger A, Berry J J, Luther J M 2018 Nat. Energy 3 68Google Scholar

    [85]

    CorreaBaena J P, Luo Y, Brenner T M, Snaider J, Sun S, Li X, Jensen M A, Hartono N T P, Nienhaus L, Wieghold S 2019 Science 363 627Google Scholar

    [86]

    Liu C, Li W, Zhang C, Ma Y, Fan J, Mai Y 2018 J. Am. Chem. Soc. 140 3825Google Scholar

    [87]

    Ke W, Spanopoulos I, Stoumpos C C, Kanatzidis M G 2018 Nat. Commun. 9 4785

  • 图 1  MA+, FA+, Cs+, Rb+结构示意图[18]

    Fig. 1.  Schematic diagram of MA+, FA+, Cs+, Rb+[18].

    图 2  RbCsFA三元钙钛矿太阳能电池最大功率点输出[18]

    Fig. 2.  Maximum power point tracking of RbCsFA hybrid perovskite solar cells[18].

    图 3  Eu3+/Eu2+催化消除铅、碘零价缺陷机理[36]

    Fig. 3.  Proposed mechanism diagram of cyclically elimination of Pb0 and I0 defects and regeneration of Eu3+-Eu2+ metal ion pair[36].

    图 4  PEA2MA2Pb3I10晶体结构示意图[44]

    Fig. 4.  Crystal structure of PEA2MA2Pb3I10[44].

    图 5  MAPbI3中各类型点缺陷能级位置[49]

    Fig. 5.  Calculated transition energy levels of point defects in MAPbI3[49].

    图 6  X射线荧光光谱显示出不同碱金属卤化物添加剂情况下的Br离子分布[85]

    Fig. 6.  X-ray fluorescence mapping indicates heterogeneous distribution of Br as a function of alkali metal incorporation of the perovskite films[85].

    图 7  (a) DMA掺杂薄膜与HI酸添加薄膜对比; (b) DMA掺杂薄膜与HI酸添加薄膜XRD对比; (c) DMA掺杂薄膜与DMF和HI反应所得产物DMAI的核磁共振对比[87]

    Fig. 7.  Film properties and component studies: (a) Photographs, (b) XRD spectra, (c) nuclear magnetic resonance spectra of the Cs0.7DMA0.3PbI3 films and DMAI polycrystalline powder synthesized from DMF and HI[87].

    Baidu
  • [1]

    Chapin D M, Fuller C, Pearson G 1954 J. Appl. Phys. 25 676Google Scholar

    [2]

    Kaelin M, Rudmann D, Tiwari A 2004 Sol. Energy 77 749Google Scholar

    [3]

    Wang M, Chamberland N, Breau L, Moser J E, HumphryBaker R, Marsan B, Zakeeruddin S M, Grätzel M 2010 Nat. Chem. 2 385Google Scholar

    [4]

    Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542Google Scholar

    [5]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [6]

    The National Renewable Energy Laboratory http://www.nrel.gov/ [2019-03-10]

    [7]

    Burschka J, Pellet N, Moon S J, HumphryBaker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar

    [8]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [9]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [10]

    Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Grätzel M, Seok S I 2013 J. Am. Chem. Soc. 135 19087Google Scholar

    [11]

    Wang D L, Cui H J, Hou G J, Zhu Z G, Yan Q B, Su G 2016 Sci. Rep. 6 18922Google Scholar

    [12]

    Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D'Haen J, D'Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E 2015 Adv. Energy Mater. 5 1500477Google Scholar

    [13]

    Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885Google Scholar

    [14]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [15]

    Kim H S, Seo J Y, Park N G 2016 ChemSusChem 9 2528Google Scholar

    [16]

    Supasai T, Rujisamphan N, Ullrich K, Chemseddine A, Dittrich T 2013 Appl. Phys. Lett. 103 183906Google Scholar

    [17]

    张翱, 陈云琳, 闫君, 张春秀 2018 67 106701Google Scholar

    Zhang A, Chen Y L, Yan J, Zhang C X 2018 Acta Phys. Sin. 67 106701Google Scholar

    [18]

    TurrenCruz S H, Hagfeldt A, Saliba M 2018 Science 362 449Google Scholar

    [19]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar

    [20]

    Lee J W, Seol D J, Cho A N, Park N G 2014 Adv. Mater. 26 4991Google Scholar

    [21]

    Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D 2016 J. Phys. Chem. Lett. 7 746Google Scholar

    [22]

    Zhao B, Jin S F, Huang S, Liu N, Ma J Y, Xue D J, Han Q, Ding J, Ge Q Q, Feng Y 2018 J. Am. Chem. Soc. 140 11716Google Scholar

    [23]

    Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J 2018 Nat. Commun. 9 2225Google Scholar

    [24]

    Luo P, Xia W, Zhou S, Sun L, Cheng J, Xu C, Lu Y 2016 J. Phys. Chem. Lett. 7 3603Google Scholar

    [25]

    Xue J, Lee J W, Dai Z, Wang R, Nuryyeva S, Liao M E, Chang S Y, Meng L, Meng D, Sun P 2018 Joule 2 1866Google Scholar

    [26]

    Zhou N, Shen Y, Zhang Y, Xu Z, Zheng G, Li L, Chen Q, Zhou H 2017 Small 13 1700484Google Scholar

    [27]

    Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, Haque S A 2015 Angew. Chem. Int. Edit. 54 8208Google Scholar

    [28]

    Wang S, Jiang Y, JuarezPerez E J, Ono L K, Qi Y 2017 Nat. Energy 2 16195Google Scholar

    [29]

    Raga S R, Jung M C, Lee M V, Leyden M R, Kato Y, Qi Y 2015 Chem. Mat. 27 1597Google Scholar

    [30]

    Li Y, Xu X, Wang C, Ecker B, Yang J, Huang J, Gao Y 2017 J. Phys. Chem. C 121 3904Google Scholar

    [31]

    Philippe B, Jacobsson T J, CorreaBaena J P, Jena N K, Banerjee A, Chakraborty S, Cappel U B, Ahuja R, Hagfeldt A, Odelius M 2017 J. Phys. Chem. C 121 26655Google Scholar

    [32]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S 2015 Science 350 1222Google Scholar

    [33]

    Xie H, Liu X, Lyu L, Niu D, Wang Q, Huang J, Gao Y 2016 J. Phys. Chem. C 120 215

    [34]

    Zhang W, Pathak S, Sakai N, Stergiopoulos T, Nayak P K, Noel N K, Haghighirad A A, Burlakov V M, Sadhanala A, Li W 2015 Nat. Commun. 6 10030Google Scholar

    [35]

    Liu Z, Hu J, Jiao H, Li L, Zheng G, Chen Y, Huang Y, Zhang Q, Shen C, Chen Q 2017 Adv. Mater. 29 1606774Google Scholar

    [36]

    Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L 2019 Science 363 265Google Scholar

    [37]

    Christians J A, Miranda Herrera P A, Kamat P V 2015 J. Am. Chem. Soc. 137 1530Google Scholar

    [38]

    Niu G, Guo X, Wang L 2015 J. Mater. Chem. A 3 8970Google Scholar

    [39]

    Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M, Walsh A 2014 Nano Lett. 14 2584Google Scholar

    [40]

    Chen J, Wang Y, Gan L, He Y, Li H, Zhai T 2017 Angew. Chem. Int. Edit. 56 14893Google Scholar

    [41]

    Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P 2015 Science 349 1518Google Scholar

    [42]

    Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G 2016 Chem. Mat. 28 2852Google Scholar

    [43]

    Zhang X, Ren X, Liu B, Munir R, Zhu X, Yang D, Li J, Liu Y, Smilgies D M, Li R, Yang Z, Niu T, Wang X, Amassian A, Zhao K, Liu S 2017 Energy Environ. Sci. 10 2095Google Scholar

    [44]

    Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Karunadasa H I 2014 Angew. Chem. 126 11414Google Scholar

    [45]

    Grancini G, RoldánCarmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, de Angelis F, Graetzel M 2017 Nat. Commun. 8 15684Google Scholar

    [46]

    Li P, Zhang Y, Liang C, Xing G, Liu X, Li F, Liu X, Hu X, Shao G, Song Y 2018 Adv. Mater. 30 1805323Google Scholar

    [47]

    Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q 2016 Nat. Commun. 7 10228Google Scholar

    [48]

    Yang S, Wang Y, Liu P, Cheng Y B, Zhao H J, Yang H G 2016 Nat. Energy 1 15016Google Scholar

    [49]

    Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar

    [50]

    Yan Y, Yin WJ, Shi T, Meng W, Feng C 2016 Organic-Inorganic Halide Perovskite Photovoltaics (Switzerland: Springer) pp79-105

    [51]

    Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano Lett. 14 6281Google Scholar

    [52]

    Buin A, Comin R, Xu J, Ip A H, Sargent E H 2015 Chem. Mat. 27 4405Google Scholar

    [53]

    Park B W, Seok S I 2019 Adv. Mater. 31 1805337Google Scholar

    [54]

    李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生 2018 67 158801Google Scholar

    Li S H, Li H T, Jiang Y X, Tu L M, Li W B, Pan L, Yang S E, Chen Y S 2018 Acta Phys. Sin. 67 158801Google Scholar

    [55]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H 2017 Science 356 1376Google Scholar

    [56]

    Chen Y H, Li N X, Wang L G, Li L, Xu Z Q, Jiao H Y, Liu P F, Zhu C, Zai H C, Sun M Z, Zou W, Zhang S, Xing G C, Liu X F, Wang J P, Li D D, Huang B L, Chen Q, Zhou H P 2019 Nat. Commun. 10 1112Google Scholar

    [57]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, CorreaBaena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206Google Scholar

    [58]

    Wang R, Xue J, Meng L, Lee J W, Zhao Z, Sun P, Cai L, Huang T, Wang Z, Wang Z K 2019 Joule 3

    [59]

    Lee J W, Yu H, Lee K, Bae S, Kim J, Han G R, Hwang D, Kim S K, Jang J 2019 J. Am. Chem. Soc. 141 5808Google Scholar

    [60]

    Ohmann R, Ono L K, Kim H S, Lin H, Lee M V, Li Y, Park N G, Qi Y 2015 J. Am. Chem. Soc. 137 16049Google Scholar

    [61]

    Rothmann M U, Li W, Zhu Y, Bach U, Spiccia L, Etheridge J, Cheng Y B 2017 Nat. Commun. 8 14547Google Scholar

    [62]

    Liu Y T, Collins L, Proksch R, Kim S, Watson B R, Doughty B, Calhoun T R, Ahmadi M, Ievlev A V, Jesse S, Retterer S T, Belianiov A, Xiao K, Huang J S, Sumpter B G, Kalinin S V, Hu B, Ovchinnikova O S 2018 Nat. Mater. 17 1013Google Scholar

    [63]

    Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A 2016 Energy Environ. Sci. 9 1752Google Scholar

    [64]

    Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, Yang Y 2014 Nano Lett. 14 4158Google Scholar

    [65]

    Shao Y, Xiao Z, Bi C, Yuan Y, Huang J 2014 Nat. Commun. 5 5784Google Scholar

    [66]

    Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng X C, Huang J 2017 Nat. Energy 2 17102Google Scholar

    [67]

    Yang S, Dai J, Yu Z, Shao Y, Zhou Y, Xiao X, Zeng X C, Huang J 2019 J. Am. Chem. Soc. 141 5781Google Scholar

    [68]

    Tan H, Jain A, Voznyy O, Lan X Z, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [69]

    Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H, Stranks S D 2018 Nature 555 497Google Scholar

    [70]

    Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N 2016 Adv. Mater. 28 9986Google Scholar

    [71]

    Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photon. 13 460Google Scholar

    [72]

    Bi E, Chen H, Xie F, Wu Y, Chen W, Su Y, Islam A, Grätzel M, Yang X, Han L 2017 Nat. Commun. 8 15330Google Scholar

    [73]

    Eames C, Frost J M, Barnes P R, O’regan B C, Walsh A, Islam M S 2015 Nat. Commun. 6 7497Google Scholar

    [74]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar

    [75]

    van Reenen S, Kemerink M, Snaith H J 2015 J. Phys. Chem. Lett. 6 3808Google Scholar

    [76]

    Liu L, Huang S, Lu Y, Liu P, Zhao Y, Shi C, Zhang S, Wu J, Zhong H, Sui M 2018 Adv. Mater. 30 1800544Google Scholar

    [77]

    Li Z, Xiao C, Yang Y, Harvey S P, Kim D H, Christians J A, Yang M, Schulz P, Nanayakkara S U, Jiang C S 2017 Energy Environ. Sci. 10 1234Google Scholar

    [78]

    Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358Google Scholar

    [79]

    Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, de Marco N, Zhao H, Sun P, Huang Y 2018 Nat. Commun. 9 3021Google Scholar

    [80]

    Goldschmidt V, Videnskaps-Akad S, Oslo I 1926 Mat. Nat. Kl8

    [81]

    Li Z, Yang M, Park J S, Wei S H, Berry J J, Zhu K 2016 Chem. Mat. 28 284

    [82]

    Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Grätzel M, de Angelis F 2014 Nano Lett. 14 3608Google Scholar

    [83]

    Poglitsch A, Weber D 1987 J. Chem. Phys. 87 6373Google Scholar

    [84]

    Christians J A, Schulz P, Tinkham J S, Schloemer T H, Harvey S P, de Villers B J T, Sellinger A, Berry J J, Luther J M 2018 Nat. Energy 3 68Google Scholar

    [85]

    CorreaBaena J P, Luo Y, Brenner T M, Snaider J, Sun S, Li X, Jensen M A, Hartono N T P, Nienhaus L, Wieghold S 2019 Science 363 627Google Scholar

    [86]

    Liu C, Li W, Zhang C, Ma Y, Fan J, Mai Y 2018 J. Am. Chem. Soc. 140 3825Google Scholar

    [87]

    Ke W, Spanopoulos I, Stoumpos C C, Kanatzidis M G 2018 Nat. Commun. 9 4785

  • [1] 姚美灵, 廖纪星, 逯好峰, 黄强, 崔艳峰, 李翔, 杨雪莹, 白杨. 影响钙钛矿/异质结叠层太阳能电池效率及稳定性的关键问题与解决方法.  , 2024, 73(8): 088801. doi: 10.7498/aps.73.20231977
    [2] 刘思雯, 任立志, 金博文, 宋欣, 吴聪聪. 溶液法制备二维钙钛矿层提高甲脒碘化铅钙钛矿太阳能电池稳定性.  , 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [3] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响.  , 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [4] 孟婧, 高博文. 新型高效率和高稳定性钙钛矿/有机集成太阳电池光伏性能研究.  , 2023, 72(1): 018802. doi: 10.7498/aps.72.20221120
    [5] 李燕, 贺红, 党威武, 陈雪莲, 孙璨, 郑嘉璐. 钙钛矿太阳电池中各功能层的光辐照稳定性研究进展.  , 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [6] 张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛. CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响.  , 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [7] 姬超, 梁春军, 由芳田, 何志群. 界面修饰对有机-无机杂化钙钛矿太阳能电池性能的影响.  , 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [8] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性.  , 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [9] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展.  , 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [10] 郭宁, 周舟, 倪牮, 蔡宏琨, 张建军, 孙艳艳, 李娟. 基于二维有机无机杂化钙钛矿的薄膜晶体管.  , 2020, 69(19): 198102. doi: 10.7498/aps.69.20200701
    [11] 楼浩然, 叶志镇, 何海平. 铅卤钙钛矿的光稳定性研究进展.  , 2019, 68(15): 157102. doi: 10.7498/aps.68.20190324
    [12] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生. 高效平面异质结有机-无机杂化钙钛矿太阳电池的质量管理.  , 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [13] 陈亮, 张利伟, 陈永生. 无铅和少铅的有机-无机杂化钙钛矿太阳电池研究进展.  , 2018, 67(2): 028801. doi: 10.7498/aps.67.20171956
    [14] 郭宏伟, 刘然, 王玲瑞, 崔金星, 宋波, 王凯, 刘冰冰, 邹勃. 高压下有机-无机杂化钙钛矿CH3NH3PbI3的结构及光学性质研究.  , 2017, 66(3): 030701. doi: 10.7498/aps.66.030701
    [15] 刘娜, 危阳, 马新国, 祝林, 徐国旺, 楚亮, 黄楚云. 钙钛矿APbI3结构稳定性及光电性质的理论研究.  , 2017, 66(5): 057103. doi: 10.7498/aps.66.057103
    [16] 王福芝, 谭占鳌, 戴松元, 李永舫. 平面异质结有机-无机杂化钙钛矿太阳电池研究进展.  , 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [17] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新. 影响杂化钙钛矿太阳能电池稳定性的因素探讨.  , 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [18] 郑莹莹, 邓海涛, 万静, 李超荣. 有机-无机杂化钙钛矿自组装量子阱结构的能带调控和光电性能的研究.  , 2011, 60(6): 067306. doi: 10.7498/aps.60.067306
    [19] 程萍, 张玉明, 张义门, 王悦湖, 郭辉. 非故意掺杂4H-SiC外延材料本征缺陷的热稳定性.  , 2010, 59(5): 3542-3546. doi: 10.7498/aps.59.3542
    [20] 马新国, 江建军, 梁 培. 锐钛矿型TiO2(101)面本征点缺陷的理论研究.  , 2008, 57(5): 3120-3125. doi: 10.7498/aps.57.3120
计量
  • 文章访问数:  19485
  • PDF下载量:  499
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-11
  • 修回日期:  2019-05-03
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回
Baidu
map