-
The power conversion efficiency of organic-inorganic hybrid perovskite solar cell has exceeded 24%. The rapid increase in efficiency coupled with its cost-effective fabrication has attracted tremendous attention toward the commercialization of perovskite solar cells. The biggest challenge that hinders the commercialization of perovskite solar cells is the long-term instability of materials and the corresponding devices, which cannot compete with other commercialized solar cells, such as Si cells, in terms of lifetime. The intrinsic instability of perovskite material itself is the most critical challenge faced by researchers. In this study, we discuss the intrinsic instability of organic-inorganic hybrid perovskite materials from the aspects of both chemical instability and phase instability. Suggestions for improving the stability of perovskite solar cell are provided from the perspective of composition design and fabrication process.
-
Keywords:
- hybrid perovskite /
- intrinsic stability
[1] Chapin D M, Fuller C, Pearson G 1954 J. Appl. Phys. 25 676
Google Scholar
[2] Kaelin M, Rudmann D, Tiwari A 2004 Sol. Energy 77 749
Google Scholar
[3] Wang M, Chamberland N, Breau L, Moser J E, HumphryBaker R, Marsan B, Zakeeruddin S M, Grätzel M 2010 Nat. Chem. 2 385
Google Scholar
[4] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542
Google Scholar
[5] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
Google Scholar
[6] The National Renewable Energy Laboratory http://www.nrel.gov/ [2019-03-10]
[7] Burschka J, Pellet N, Moon S J, HumphryBaker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316
Google Scholar
[8] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395
Google Scholar
[9] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341
Google Scholar
[10] Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Grätzel M, Seok S I 2013 J. Am. Chem. Soc. 135 19087
Google Scholar
[11] Wang D L, Cui H J, Hou G J, Zhu Z G, Yan Q B, Su G 2016 Sci. Rep. 6 18922
Google Scholar
[12] Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D'Haen J, D'Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E 2015 Adv. Energy Mater. 5 1500477
Google Scholar
[13] Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885
Google Scholar
[14] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591
Google Scholar
[15] Kim H S, Seo J Y, Park N G 2016 ChemSusChem 9 2528
Google Scholar
[16] Supasai T, Rujisamphan N, Ullrich K, Chemseddine A, Dittrich T 2013 Appl. Phys. Lett. 103 183906
Google Scholar
[17] 张翱, 陈云琳, 闫君, 张春秀 2018 67 106701
Google Scholar
Zhang A, Chen Y L, Yan J, Zhang C X 2018 Acta Phys. Sin. 67 106701
Google Scholar
[18] TurrenCruz S H, Hagfeldt A, Saliba M 2018 Science 362 449
Google Scholar
[19] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982
Google Scholar
[20] Lee J W, Seol D J, Cho A N, Park N G 2014 Adv. Mater. 26 4991
Google Scholar
[21] Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D 2016 J. Phys. Chem. Lett. 7 746
Google Scholar
[22] Zhao B, Jin S F, Huang S, Liu N, Ma J Y, Xue D J, Han Q, Ding J, Ge Q Q, Feng Y 2018 J. Am. Chem. Soc. 140 11716
Google Scholar
[23] Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J 2018 Nat. Commun. 9 2225
Google Scholar
[24] Luo P, Xia W, Zhou S, Sun L, Cheng J, Xu C, Lu Y 2016 J. Phys. Chem. Lett. 7 3603
Google Scholar
[25] Xue J, Lee J W, Dai Z, Wang R, Nuryyeva S, Liao M E, Chang S Y, Meng L, Meng D, Sun P 2018 Joule 2 1866
Google Scholar
[26] Zhou N, Shen Y, Zhang Y, Xu Z, Zheng G, Li L, Chen Q, Zhou H 2017 Small 13 1700484
Google Scholar
[27] Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, Haque S A 2015 Angew. Chem. Int. Edit. 54 8208
Google Scholar
[28] Wang S, Jiang Y, JuarezPerez E J, Ono L K, Qi Y 2017 Nat. Energy 2 16195
Google Scholar
[29] Raga S R, Jung M C, Lee M V, Leyden M R, Kato Y, Qi Y 2015 Chem. Mat. 27 1597
Google Scholar
[30] Li Y, Xu X, Wang C, Ecker B, Yang J, Huang J, Gao Y 2017 J. Phys. Chem. C 121 3904
Google Scholar
[31] Philippe B, Jacobsson T J, CorreaBaena J P, Jena N K, Banerjee A, Chakraborty S, Cappel U B, Ahuja R, Hagfeldt A, Odelius M 2017 J. Phys. Chem. C 121 26655
Google Scholar
[32] Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S 2015 Science 350 1222
Google Scholar
[33] Xie H, Liu X, Lyu L, Niu D, Wang Q, Huang J, Gao Y 2016 J. Phys. Chem. C 120 215
[34] Zhang W, Pathak S, Sakai N, Stergiopoulos T, Nayak P K, Noel N K, Haghighirad A A, Burlakov V M, Sadhanala A, Li W 2015 Nat. Commun. 6 10030
Google Scholar
[35] Liu Z, Hu J, Jiao H, Li L, Zheng G, Chen Y, Huang Y, Zhang Q, Shen C, Chen Q 2017 Adv. Mater. 29 1606774
Google Scholar
[36] Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L 2019 Science 363 265
Google Scholar
[37] Christians J A, Miranda Herrera P A, Kamat P V 2015 J. Am. Chem. Soc. 137 1530
Google Scholar
[38] Niu G, Guo X, Wang L 2015 J. Mater. Chem. A 3 8970
Google Scholar
[39] Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M, Walsh A 2014 Nano Lett. 14 2584
Google Scholar
[40] Chen J, Wang Y, Gan L, He Y, Li H, Zhai T 2017 Angew. Chem. Int. Edit. 56 14893
Google Scholar
[41] Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P 2015 Science 349 1518
Google Scholar
[42] Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G 2016 Chem. Mat. 28 2852
Google Scholar
[43] Zhang X, Ren X, Liu B, Munir R, Zhu X, Yang D, Li J, Liu Y, Smilgies D M, Li R, Yang Z, Niu T, Wang X, Amassian A, Zhao K, Liu S 2017 Energy Environ. Sci. 10 2095
Google Scholar
[44] Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Karunadasa H I 2014 Angew. Chem. 126 11414
Google Scholar
[45] Grancini G, RoldánCarmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, de Angelis F, Graetzel M 2017 Nat. Commun. 8 15684
Google Scholar
[46] Li P, Zhang Y, Liang C, Xing G, Liu X, Li F, Liu X, Hu X, Shao G, Song Y 2018 Adv. Mater. 30 1805323
Google Scholar
[47] Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q 2016 Nat. Commun. 7 10228
Google Scholar
[48] Yang S, Wang Y, Liu P, Cheng Y B, Zhao H J, Yang H G 2016 Nat. Energy 1 15016
Google Scholar
[49] Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653
Google Scholar
[50] Yan Y, Yin WJ, Shi T, Meng W, Feng C 2016 Organic-Inorganic Halide Perovskite Photovoltaics (Switzerland: Springer) pp79-105
[51] Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano Lett. 14 6281
Google Scholar
[52] Buin A, Comin R, Xu J, Ip A H, Sargent E H 2015 Chem. Mat. 27 4405
Google Scholar
[53] Park B W, Seok S I 2019 Adv. Mater. 31 1805337
Google Scholar
[54] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生 2018 67 158801
Google Scholar
Li S H, Li H T, Jiang Y X, Tu L M, Li W B, Pan L, Yang S E, Chen Y S 2018 Acta Phys. Sin. 67 158801
Google Scholar
[55] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H 2017 Science 356 1376
Google Scholar
[56] Chen Y H, Li N X, Wang L G, Li L, Xu Z Q, Jiao H Y, Liu P F, Zhu C, Zai H C, Sun M Z, Zou W, Zhang S, Xing G C, Liu X F, Wang J P, Li D D, Huang B L, Chen Q, Zhou H P 2019 Nat. Commun. 10 1112
Google Scholar
[57] Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, CorreaBaena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206
Google Scholar
[58] Wang R, Xue J, Meng L, Lee J W, Zhao Z, Sun P, Cai L, Huang T, Wang Z, Wang Z K 2019 Joule 3
[59] Lee J W, Yu H, Lee K, Bae S, Kim J, Han G R, Hwang D, Kim S K, Jang J 2019 J. Am. Chem. Soc. 141 5808
Google Scholar
[60] Ohmann R, Ono L K, Kim H S, Lin H, Lee M V, Li Y, Park N G, Qi Y 2015 J. Am. Chem. Soc. 137 16049
Google Scholar
[61] Rothmann M U, Li W, Zhu Y, Bach U, Spiccia L, Etheridge J, Cheng Y B 2017 Nat. Commun. 8 14547
Google Scholar
[62] Liu Y T, Collins L, Proksch R, Kim S, Watson B R, Doughty B, Calhoun T R, Ahmadi M, Ievlev A V, Jesse S, Retterer S T, Belianiov A, Xiao K, Huang J S, Sumpter B G, Kalinin S V, Hu B, Ovchinnikova O S 2018 Nat. Mater. 17 1013
Google Scholar
[63] Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A 2016 Energy Environ. Sci. 9 1752
Google Scholar
[64] Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, Yang Y 2014 Nano Lett. 14 4158
Google Scholar
[65] Shao Y, Xiao Z, Bi C, Yuan Y, Huang J 2014 Nat. Commun. 5 5784
Google Scholar
[66] Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng X C, Huang J 2017 Nat. Energy 2 17102
Google Scholar
[67] Yang S, Dai J, Yu Z, Shao Y, Zhou Y, Xiao X, Zeng X C, Huang J 2019 J. Am. Chem. Soc. 141 5781
Google Scholar
[68] Tan H, Jain A, Voznyy O, Lan X Z, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722
Google Scholar
[69] Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H, Stranks S D 2018 Nature 555 497
Google Scholar
[70] Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N 2016 Adv. Mater. 28 9986
Google Scholar
[71] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photon. 13 460
Google Scholar
[72] Bi E, Chen H, Xie F, Wu Y, Chen W, Su Y, Islam A, Grätzel M, Yang X, Han L 2017 Nat. Commun. 8 15330
Google Scholar
[73] Eames C, Frost J M, Barnes P R, O’regan B C, Walsh A, Islam M S 2015 Nat. Commun. 6 7497
Google Scholar
[74] Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511
Google Scholar
[75] van Reenen S, Kemerink M, Snaith H J 2015 J. Phys. Chem. Lett. 6 3808
Google Scholar
[76] Liu L, Huang S, Lu Y, Liu P, Zhao Y, Shi C, Zhang S, Wu J, Zhong H, Sui M 2018 Adv. Mater. 30 1800544
Google Scholar
[77] Li Z, Xiao C, Yang Y, Harvey S P, Kim D H, Christians J A, Yang M, Schulz P, Nanayakkara S U, Jiang C S 2017 Energy Environ. Sci. 10 1234
Google Scholar
[78] Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358
Google Scholar
[79] Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, de Marco N, Zhao H, Sun P, Huang Y 2018 Nat. Commun. 9 3021
Google Scholar
[80] Goldschmidt V, Videnskaps-Akad S, Oslo I 1926 Mat. Nat. Kl8
[81] Li Z, Yang M, Park J S, Wei S H, Berry J J, Zhu K 2016 Chem. Mat. 28 284
[82] Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Grätzel M, de Angelis F 2014 Nano Lett. 14 3608
Google Scholar
[83] Poglitsch A, Weber D 1987 J. Chem. Phys. 87 6373
Google Scholar
[84] Christians J A, Schulz P, Tinkham J S, Schloemer T H, Harvey S P, de Villers B J T, Sellinger A, Berry J J, Luther J M 2018 Nat. Energy 3 68
Google Scholar
[85] CorreaBaena J P, Luo Y, Brenner T M, Snaider J, Sun S, Li X, Jensen M A, Hartono N T P, Nienhaus L, Wieghold S 2019 Science 363 627
Google Scholar
[86] Liu C, Li W, Zhang C, Ma Y, Fan J, Mai Y 2018 J. Am. Chem. Soc. 140 3825
Google Scholar
[87] Ke W, Spanopoulos I, Stoumpos C C, Kanatzidis M G 2018 Nat. Commun. 9 4785
-
图 7 (a) DMA掺杂薄膜与HI酸添加薄膜对比; (b) DMA掺杂薄膜与HI酸添加薄膜XRD对比; (c) DMA掺杂薄膜与DMF和HI反应所得产物DMAI的核磁共振对比[87]
Fig. 7. Film properties and component studies: (a) Photographs, (b) XRD spectra, (c) nuclear magnetic resonance spectra of the Cs0.7DMA0.3PbI3 films and DMAI polycrystalline powder synthesized from DMF and HI[87].
-
[1] Chapin D M, Fuller C, Pearson G 1954 J. Appl. Phys. 25 676
Google Scholar
[2] Kaelin M, Rudmann D, Tiwari A 2004 Sol. Energy 77 749
Google Scholar
[3] Wang M, Chamberland N, Breau L, Moser J E, HumphryBaker R, Marsan B, Zakeeruddin S M, Grätzel M 2010 Nat. Chem. 2 385
Google Scholar
[4] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542
Google Scholar
[5] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
Google Scholar
[6] The National Renewable Energy Laboratory http://www.nrel.gov/ [2019-03-10]
[7] Burschka J, Pellet N, Moon S J, HumphryBaker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316
Google Scholar
[8] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395
Google Scholar
[9] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341
Google Scholar
[10] Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Grätzel M, Seok S I 2013 J. Am. Chem. Soc. 135 19087
Google Scholar
[11] Wang D L, Cui H J, Hou G J, Zhu Z G, Yan Q B, Su G 2016 Sci. Rep. 6 18922
Google Scholar
[12] Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D'Haen J, D'Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E 2015 Adv. Energy Mater. 5 1500477
Google Scholar
[13] Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885
Google Scholar
[14] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591
Google Scholar
[15] Kim H S, Seo J Y, Park N G 2016 ChemSusChem 9 2528
Google Scholar
[16] Supasai T, Rujisamphan N, Ullrich K, Chemseddine A, Dittrich T 2013 Appl. Phys. Lett. 103 183906
Google Scholar
[17] 张翱, 陈云琳, 闫君, 张春秀 2018 67 106701
Google Scholar
Zhang A, Chen Y L, Yan J, Zhang C X 2018 Acta Phys. Sin. 67 106701
Google Scholar
[18] TurrenCruz S H, Hagfeldt A, Saliba M 2018 Science 362 449
Google Scholar
[19] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982
Google Scholar
[20] Lee J W, Seol D J, Cho A N, Park N G 2014 Adv. Mater. 26 4991
Google Scholar
[21] Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D 2016 J. Phys. Chem. Lett. 7 746
Google Scholar
[22] Zhao B, Jin S F, Huang S, Liu N, Ma J Y, Xue D J, Han Q, Ding J, Ge Q Q, Feng Y 2018 J. Am. Chem. Soc. 140 11716
Google Scholar
[23] Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J 2018 Nat. Commun. 9 2225
Google Scholar
[24] Luo P, Xia W, Zhou S, Sun L, Cheng J, Xu C, Lu Y 2016 J. Phys. Chem. Lett. 7 3603
Google Scholar
[25] Xue J, Lee J W, Dai Z, Wang R, Nuryyeva S, Liao M E, Chang S Y, Meng L, Meng D, Sun P 2018 Joule 2 1866
Google Scholar
[26] Zhou N, Shen Y, Zhang Y, Xu Z, Zheng G, Li L, Chen Q, Zhou H 2017 Small 13 1700484
Google Scholar
[27] Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, Haque S A 2015 Angew. Chem. Int. Edit. 54 8208
Google Scholar
[28] Wang S, Jiang Y, JuarezPerez E J, Ono L K, Qi Y 2017 Nat. Energy 2 16195
Google Scholar
[29] Raga S R, Jung M C, Lee M V, Leyden M R, Kato Y, Qi Y 2015 Chem. Mat. 27 1597
Google Scholar
[30] Li Y, Xu X, Wang C, Ecker B, Yang J, Huang J, Gao Y 2017 J. Phys. Chem. C 121 3904
Google Scholar
[31] Philippe B, Jacobsson T J, CorreaBaena J P, Jena N K, Banerjee A, Chakraborty S, Cappel U B, Ahuja R, Hagfeldt A, Odelius M 2017 J. Phys. Chem. C 121 26655
Google Scholar
[32] Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S 2015 Science 350 1222
Google Scholar
[33] Xie H, Liu X, Lyu L, Niu D, Wang Q, Huang J, Gao Y 2016 J. Phys. Chem. C 120 215
[34] Zhang W, Pathak S, Sakai N, Stergiopoulos T, Nayak P K, Noel N K, Haghighirad A A, Burlakov V M, Sadhanala A, Li W 2015 Nat. Commun. 6 10030
Google Scholar
[35] Liu Z, Hu J, Jiao H, Li L, Zheng G, Chen Y, Huang Y, Zhang Q, Shen C, Chen Q 2017 Adv. Mater. 29 1606774
Google Scholar
[36] Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L 2019 Science 363 265
Google Scholar
[37] Christians J A, Miranda Herrera P A, Kamat P V 2015 J. Am. Chem. Soc. 137 1530
Google Scholar
[38] Niu G, Guo X, Wang L 2015 J. Mater. Chem. A 3 8970
Google Scholar
[39] Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M, Walsh A 2014 Nano Lett. 14 2584
Google Scholar
[40] Chen J, Wang Y, Gan L, He Y, Li H, Zhai T 2017 Angew. Chem. Int. Edit. 56 14893
Google Scholar
[41] Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P 2015 Science 349 1518
Google Scholar
[42] Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G 2016 Chem. Mat. 28 2852
Google Scholar
[43] Zhang X, Ren X, Liu B, Munir R, Zhu X, Yang D, Li J, Liu Y, Smilgies D M, Li R, Yang Z, Niu T, Wang X, Amassian A, Zhao K, Liu S 2017 Energy Environ. Sci. 10 2095
Google Scholar
[44] Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Karunadasa H I 2014 Angew. Chem. 126 11414
Google Scholar
[45] Grancini G, RoldánCarmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, de Angelis F, Graetzel M 2017 Nat. Commun. 8 15684
Google Scholar
[46] Li P, Zhang Y, Liang C, Xing G, Liu X, Li F, Liu X, Hu X, Shao G, Song Y 2018 Adv. Mater. 30 1805323
Google Scholar
[47] Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q 2016 Nat. Commun. 7 10228
Google Scholar
[48] Yang S, Wang Y, Liu P, Cheng Y B, Zhao H J, Yang H G 2016 Nat. Energy 1 15016
Google Scholar
[49] Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653
Google Scholar
[50] Yan Y, Yin WJ, Shi T, Meng W, Feng C 2016 Organic-Inorganic Halide Perovskite Photovoltaics (Switzerland: Springer) pp79-105
[51] Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano Lett. 14 6281
Google Scholar
[52] Buin A, Comin R, Xu J, Ip A H, Sargent E H 2015 Chem. Mat. 27 4405
Google Scholar
[53] Park B W, Seok S I 2019 Adv. Mater. 31 1805337
Google Scholar
[54] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生 2018 67 158801
Google Scholar
Li S H, Li H T, Jiang Y X, Tu L M, Li W B, Pan L, Yang S E, Chen Y S 2018 Acta Phys. Sin. 67 158801
Google Scholar
[55] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H 2017 Science 356 1376
Google Scholar
[56] Chen Y H, Li N X, Wang L G, Li L, Xu Z Q, Jiao H Y, Liu P F, Zhu C, Zai H C, Sun M Z, Zou W, Zhang S, Xing G C, Liu X F, Wang J P, Li D D, Huang B L, Chen Q, Zhou H P 2019 Nat. Commun. 10 1112
Google Scholar
[57] Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, CorreaBaena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206
Google Scholar
[58] Wang R, Xue J, Meng L, Lee J W, Zhao Z, Sun P, Cai L, Huang T, Wang Z, Wang Z K 2019 Joule 3
[59] Lee J W, Yu H, Lee K, Bae S, Kim J, Han G R, Hwang D, Kim S K, Jang J 2019 J. Am. Chem. Soc. 141 5808
Google Scholar
[60] Ohmann R, Ono L K, Kim H S, Lin H, Lee M V, Li Y, Park N G, Qi Y 2015 J. Am. Chem. Soc. 137 16049
Google Scholar
[61] Rothmann M U, Li W, Zhu Y, Bach U, Spiccia L, Etheridge J, Cheng Y B 2017 Nat. Commun. 8 14547
Google Scholar
[62] Liu Y T, Collins L, Proksch R, Kim S, Watson B R, Doughty B, Calhoun T R, Ahmadi M, Ievlev A V, Jesse S, Retterer S T, Belianiov A, Xiao K, Huang J S, Sumpter B G, Kalinin S V, Hu B, Ovchinnikova O S 2018 Nat. Mater. 17 1013
Google Scholar
[63] Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A 2016 Energy Environ. Sci. 9 1752
Google Scholar
[64] Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, Yang Y 2014 Nano Lett. 14 4158
Google Scholar
[65] Shao Y, Xiao Z, Bi C, Yuan Y, Huang J 2014 Nat. Commun. 5 5784
Google Scholar
[66] Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng X C, Huang J 2017 Nat. Energy 2 17102
Google Scholar
[67] Yang S, Dai J, Yu Z, Shao Y, Zhou Y, Xiao X, Zeng X C, Huang J 2019 J. Am. Chem. Soc. 141 5781
Google Scholar
[68] Tan H, Jain A, Voznyy O, Lan X Z, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722
Google Scholar
[69] Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H, Stranks S D 2018 Nature 555 497
Google Scholar
[70] Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N 2016 Adv. Mater. 28 9986
Google Scholar
[71] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photon. 13 460
Google Scholar
[72] Bi E, Chen H, Xie F, Wu Y, Chen W, Su Y, Islam A, Grätzel M, Yang X, Han L 2017 Nat. Commun. 8 15330
Google Scholar
[73] Eames C, Frost J M, Barnes P R, O’regan B C, Walsh A, Islam M S 2015 Nat. Commun. 6 7497
Google Scholar
[74] Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511
Google Scholar
[75] van Reenen S, Kemerink M, Snaith H J 2015 J. Phys. Chem. Lett. 6 3808
Google Scholar
[76] Liu L, Huang S, Lu Y, Liu P, Zhao Y, Shi C, Zhang S, Wu J, Zhong H, Sui M 2018 Adv. Mater. 30 1800544
Google Scholar
[77] Li Z, Xiao C, Yang Y, Harvey S P, Kim D H, Christians J A, Yang M, Schulz P, Nanayakkara S U, Jiang C S 2017 Energy Environ. Sci. 10 1234
Google Scholar
[78] Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358
Google Scholar
[79] Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, de Marco N, Zhao H, Sun P, Huang Y 2018 Nat. Commun. 9 3021
Google Scholar
[80] Goldschmidt V, Videnskaps-Akad S, Oslo I 1926 Mat. Nat. Kl8
[81] Li Z, Yang M, Park J S, Wei S H, Berry J J, Zhu K 2016 Chem. Mat. 28 284
[82] Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Grätzel M, de Angelis F 2014 Nano Lett. 14 3608
Google Scholar
[83] Poglitsch A, Weber D 1987 J. Chem. Phys. 87 6373
Google Scholar
[84] Christians J A, Schulz P, Tinkham J S, Schloemer T H, Harvey S P, de Villers B J T, Sellinger A, Berry J J, Luther J M 2018 Nat. Energy 3 68
Google Scholar
[85] CorreaBaena J P, Luo Y, Brenner T M, Snaider J, Sun S, Li X, Jensen M A, Hartono N T P, Nienhaus L, Wieghold S 2019 Science 363 627
Google Scholar
[86] Liu C, Li W, Zhang C, Ma Y, Fan J, Mai Y 2018 J. Am. Chem. Soc. 140 3825
Google Scholar
[87] Ke W, Spanopoulos I, Stoumpos C C, Kanatzidis M G 2018 Nat. Commun. 9 4785
计量
- 文章访问数: 21091
- PDF下载量: 515
- 被引次数: 0