搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应变对两层半氢化氮化镓薄膜电磁学性质的调控机理研究

肖美霞 梁尤平 陈玉琴 刘萌

引用本文:
Citation:

应变对两层半氢化氮化镓薄膜电磁学性质的调控机理研究

肖美霞, 梁尤平, 陈玉琴, 刘萌

Strain field tuning the electronic and magnetic properties of semihydrogenated two-bilayer GaN nanosheets

Xiao Mei-Xia, Liang You-Ping, Chen Yu-Qin, Liu-Meng
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理模拟计算, 研究了在应变作用下两层半氢化氮化镓纳米薄膜的电学和磁学性质. 没有表面修饰的两层氮化镓纳米薄膜的原子结构为类石墨结构, 并具有间接能隙. 然而, 当两层氮化镓纳米薄膜的一侧表面镓原子被氢化时, 该纳米薄膜却依然保持纤锌矿结构, 并且展示出铁磁性半导体特性. 在应变作用下, 两层半氢化氮化镓纳米薄膜的能隙可进行有效调控, 并且它将会由半导体性质可转变为半金属性质或金属性质. 这主要是由于应变对表面氮原子的键间交互影响和p-p轨道直接交互影响之间协调作用的结果. 该研究成果为实现低维半导体纳米材料的多样化提供了有效的调控手段, 为其应用于新型电子纳米器件和自旋电子器件提供重要的理论指导.
    In this paper, first-principles calculations based on the density functional theory, are performed to investigate the effects of strain field on the electronic and magnetic properties of two-bilayer gallium nitride (GaN) nanosheets. The two-bilayer GaN nanosheet without surface modification forms a planar graphitic structure, whereas that with full hydrogenation for the surface Ga and N atoms adopts the energetically more favorable wurtzite structure. Surface hydrogenation is proven to be an effective way to induce a transition from indirect to direct band gap. The bare and fully-hydrogenated GaN nanosheets are nonmagnetic semiconductors. When only one-side Ga or N atoms on the surface are hydrogenated, the semihydrogenated two-bilayer GaN nanosheets will preserve their initial wurtzite structures. The two-bilayer GaN nanosheet with one-side N atoms hydrogenated transforms into a nonmagnetic metal, while that with one-side Ga atoms hydrogenated (H-GaN) is a ferromagnetic semiconductor with band gaps of 3.99 and 0.06 eV in the spin-up and spin-down states, respectively. We find that the two-bilayer H-GaN nanosheets will maintain ferromagnetic states under a strain field and the band gaps Eg in spin-up and spin-down states are a function of strain . As the tensile strain is +6%, the band gap in spin-up state reduces to 2.71 eV, and that in spin-down state increases to 0.41 eV for the two-bilayer H-GaN nanosheets. Under the compressive strain field, the two-bilayer H-GaN nanosheets will show a transition from semiconducting to half-metallici state under compression of -1%, where the spin-up state remains as a band gap insulator with band gap of 4.16 eV and the spin-down state is metallic. Then the two-bilayer H-GaN nanosheets will turn into fully-metallic properties with bands crossing the Fermi level in the spin-up and spin-down states under a compressive strain of -6%. Moreover, the value of binding energy Eb for the two-bilayer H-GaN nanosheet decreases (increases) monotonically with increasing compressive (tensile) strain. It is found that although hydrogenation on one-side Ga atoms of the two-bilayer H-GaN nanosheets is preferred to be under compressive strain, the two-bilayer H-GaN nanosheets are still the energetically favorable structures. The physical mechanisms of strain field tuning band gaps in the spin-up and spin-down states for the two-bilayer H-GaN nanosheets are mainly induced by the combined effects of through-bond and p-p direct interactions. Our results demonstrate that the predicted diverse and tunable electronic and magnetic properties may lead to the potential application of GaN nanosheets in novel electronic and spintronic nanodevices.
      通信作者: 肖美霞, mxxiao@xsyu.edu.cn
    • 基金项目: 陕西省教育厅科研基金(批准号: 2013JK0894)、国家级大学生创新创业训练计划项目(批准号: 201510705230)、西安石油大学博士科研启动基金(批准号: 2012BS004)和西安石油大学材料科学与工程省级优势学科(批准号: 312010005)资助的课题.
      Corresponding author: Xiao Mei-Xia, mxxiao@xsyu.edu.cn
    • Funds: Project supported by the Scientific Research Foundation of the Education Department of Shaanxi Province, China (Grant No. 2013JK0894), the National College Students' Training Programs for Innovation and Entrepreneurship of Shaanxi province, Chine (Grant No. 201510705230), the Youth Science and Technology Innovation Fund of Xi'an Shiyou University, China (Grant No. 2012BS004), and the Provincial Superior Discipline for Materials Science and Engineering of Xi'an Shiyou University, China (Grant No. 312010005).
    [1]

    Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B, Burns M 1994 J. Appl. Phys. 76 1363

    [2]

    Liu Y A, Zhuang Y Q, Du L, Su Y H 2013 Acta Phys. Sin. 62 140703 (in Chinese) [刘宇安, 庄奕琪, 杜磊, 苏亚慧 2013 62 140703]

    [3]

    Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang J F, Yang H 2012 Chin. Phys. Lett. 29 068801

    [4]

    Ma Y D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Appl. Surf. Sci. 257 7845

    [5]

    Lopez-Bezanilla A, Ganesh P, Kent P R C, Sumpter B G 2014 Nano Research 7 63

    [6]

    Goldberger J, He R R, Zhang Y F, Lee S, Yan H Q, Choi H J, Yang P D 2003 Nature 422 599

    [7]

    Bae S Y, Seo H W, Park J, Yang H, Kim H, Kim S 2003 Appl. Phys. Lett. 82 4564

    [8]

    Xiang X, Cao C B, Huang F L, Lv R T, Zhu H S 2004 J. Cryst. Growth 263 25

    [9]

    Duan X F, Lieber C M 2000 J. Am. Chem. Soc. 122 188

    [10]

    Guo R H, Lu T P, Jia Z G, Shang L, Zhang H, Wang R, Zhai G M, Xu B S 2015 Acta Phys. Sin. 64 127305 (in Chinese) [郭瑞花, 卢太平, 贾志刚, 尚林, 张华, 王蓉, 翟光美, 许并社 2015 64 127305]

    [11]

    Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T, Ciraci S 2009 Phys. Rev. B 80 155453

    [12]

    Freeman C L, Claeyssens F, Allan N L, Harding J H 2006 Phys. Rev. Lett. 96 066102

    [13]

    Gao N, Zheng W T, Jiang Q 2012 Phys. Chem. Chem. Phys. 14 257

    [14]

    Chen X F, Lian J S, Jiang Q 2012 Phys. Rev. B 86 125437

    [15]

    Zhang W X, Li T, Gong S B, He C, Duan L 2015 Phys. Chem. Chem. Phys. 17 10919

    [16]

    Li S, Wu Y F, Liu W, Zhao Y H 2014 Chem. Phys. Lett. 609 161

    [17]

    Tang Q, Cui Y, Li Y F, Zhou Z, Chen Z F 2011 J. Phys. Chem. C 115 1724

    [18]

    Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y, Jena P 2009 Nano Lett. 9 3867

    [19]

    Dai Q Q, Zhu Y F, Jiang Q 2012 Phys. Chem. Chem. Phys. 14 1253

    [20]

    Xiao W Z, Wang L L, Xu L, Wan Q, Pan A L, Deng H Q 2011 Phys. Status Solidi B 248 1442

    [21]

    Xiao M X, Yao T Z, Ao Z M, Wei P, Wang D H, Song H Y 2015 Phys. Chem. Chem. Phys. 17 8692

    [22]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102]

    [23]

    MaY D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Nanoscale 3 2301

    [24]

    Dong L, Yadav S K, Ramprasad R, Alpay S P 2010 Appl. Phys. Lett. 96 202106

    [25]

    Delley B 1990 J. Chem. Phys. 92 508

    [26]

    Delley B 2000 J. Chem. Phys. 113 7756

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Delley B 2002 Phys. Rev. B 66 155125

    [29]

    Koelling D D, Harmon B N 1977 J. Phys. C 10 3107

    [30]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [31]

    Li H M, Dai J, Li J, Zhang S, Zhou J, Zhang L J, Chu W S, Chen D L, Zhao H F, Yang J L, Wu Z Y 2010 J. Phys. Chem. C 114 11390

    [32]

    Zhou J, Wang Q, Sun Q, Jena P 2010 Phys. Rev. B 81 085442

    [33]

    Tang Q, Li Y F, Zhou Z, Chen Y S, Chen Z F 2010 ACS Appl. Mater. Inter. 2 2442

  • [1]

    Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B, Burns M 1994 J. Appl. Phys. 76 1363

    [2]

    Liu Y A, Zhuang Y Q, Du L, Su Y H 2013 Acta Phys. Sin. 62 140703 (in Chinese) [刘宇安, 庄奕琪, 杜磊, 苏亚慧 2013 62 140703]

    [3]

    Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang J F, Yang H 2012 Chin. Phys. Lett. 29 068801

    [4]

    Ma Y D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Appl. Surf. Sci. 257 7845

    [5]

    Lopez-Bezanilla A, Ganesh P, Kent P R C, Sumpter B G 2014 Nano Research 7 63

    [6]

    Goldberger J, He R R, Zhang Y F, Lee S, Yan H Q, Choi H J, Yang P D 2003 Nature 422 599

    [7]

    Bae S Y, Seo H W, Park J, Yang H, Kim H, Kim S 2003 Appl. Phys. Lett. 82 4564

    [8]

    Xiang X, Cao C B, Huang F L, Lv R T, Zhu H S 2004 J. Cryst. Growth 263 25

    [9]

    Duan X F, Lieber C M 2000 J. Am. Chem. Soc. 122 188

    [10]

    Guo R H, Lu T P, Jia Z G, Shang L, Zhang H, Wang R, Zhai G M, Xu B S 2015 Acta Phys. Sin. 64 127305 (in Chinese) [郭瑞花, 卢太平, 贾志刚, 尚林, 张华, 王蓉, 翟光美, 许并社 2015 64 127305]

    [11]

    Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T, Ciraci S 2009 Phys. Rev. B 80 155453

    [12]

    Freeman C L, Claeyssens F, Allan N L, Harding J H 2006 Phys. Rev. Lett. 96 066102

    [13]

    Gao N, Zheng W T, Jiang Q 2012 Phys. Chem. Chem. Phys. 14 257

    [14]

    Chen X F, Lian J S, Jiang Q 2012 Phys. Rev. B 86 125437

    [15]

    Zhang W X, Li T, Gong S B, He C, Duan L 2015 Phys. Chem. Chem. Phys. 17 10919

    [16]

    Li S, Wu Y F, Liu W, Zhao Y H 2014 Chem. Phys. Lett. 609 161

    [17]

    Tang Q, Cui Y, Li Y F, Zhou Z, Chen Z F 2011 J. Phys. Chem. C 115 1724

    [18]

    Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y, Jena P 2009 Nano Lett. 9 3867

    [19]

    Dai Q Q, Zhu Y F, Jiang Q 2012 Phys. Chem. Chem. Phys. 14 1253

    [20]

    Xiao W Z, Wang L L, Xu L, Wan Q, Pan A L, Deng H Q 2011 Phys. Status Solidi B 248 1442

    [21]

    Xiao M X, Yao T Z, Ao Z M, Wei P, Wang D H, Song H Y 2015 Phys. Chem. Chem. Phys. 17 8692

    [22]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102]

    [23]

    MaY D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Nanoscale 3 2301

    [24]

    Dong L, Yadav S K, Ramprasad R, Alpay S P 2010 Appl. Phys. Lett. 96 202106

    [25]

    Delley B 1990 J. Chem. Phys. 92 508

    [26]

    Delley B 2000 J. Chem. Phys. 113 7756

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Delley B 2002 Phys. Rev. B 66 155125

    [29]

    Koelling D D, Harmon B N 1977 J. Phys. C 10 3107

    [30]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [31]

    Li H M, Dai J, Li J, Zhang S, Zhou J, Zhang L J, Chu W S, Chen D L, Zhao H F, Yang J L, Wu Z Y 2010 J. Phys. Chem. C 114 11390

    [32]

    Zhou J, Wang Q, Sun Q, Jena P 2010 Phys. Rev. B 81 085442

    [33]

    Tang Q, Li Y F, Zhou Z, Chen Y S, Chen Z F 2010 ACS Appl. Mater. Inter. 2 2442

  • [1] 白刚, 韩宇航, 高存法. (111)取向无铅K0.5Na0.5NbO3外延薄膜的相变和电卡效应: 外应力与错配应变效应.  , 2022, 71(9): 097701. doi: 10.7498/aps.71.20220234
    [2] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究.  , 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [3] 潘凤春, 林雪玲, 王旭明. 应变对(Ga, Mo)Sb磁学和光学性质影响的理论研究.  , 2022, 71(9): 096103. doi: 10.7498/aps.71.20212316
    [4] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展.  , 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [5] 王鑫, 李桦, 董正超, 仲崇贵. 二维应变作用下超导薄膜LiFeAs的磁性和电子性质.  , 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [6] 轩胜杰, 柳艳. 周期性应变调控斯格明子在纳米条带中的运动.  , 2018, 67(13): 137503. doi: 10.7498/aps.67.20180031
    [7] 袁俊辉, 谢晴兴, 余念念, 王嘉赋. 单层SbAs和BiSb的表面修饰调控.  , 2016, 65(21): 217101. doi: 10.7498/aps.65.217101
    [8] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究.  , 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [9] 王疆靖, 邵瑞文, 邓青松, 郑坤. 应变加载下Si纳米线电输运性能的原位电子显微学研究.  , 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [10] 谢剑锋, 曹觉先. 六角氮化硼片能带结构的应变调控.  , 2013, 62(1): 017302. doi: 10.7498/aps.62.017302
    [11] 王丽师, 徐建萍, 石少波, 张晓松, 任志瑞, 葛林, 李岚. ZnS修饰对ZnO纳米棒:P3HT复合薄膜I-V性质的影响.  , 2013, 62(19): 196103. doi: 10.7498/aps.62.196103
    [12] 黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩. N型掺杂应变Ge发光性质.  , 2012, 61(3): 036202. doi: 10.7498/aps.61.036202
    [13] 郑立思, 冯苗, 詹红兵. 表面修饰基团对金纳米颗粒非线性光学效应的影响研究.  , 2012, 61(5): 054212. doi: 10.7498/aps.61.054212
    [14] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究.  , 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [15] 刘玉荣, 王智欣, 虞佳乐, 徐海红. 高迁移率聚合物薄膜晶体管.  , 2009, 58(12): 8566-8570. doi: 10.7498/aps.58.8566
    [16] 史力斌, 郑 岩, 任骏原, 李明标, 张国华. YBa2Cu3O7-δ/LaAlO3和Tl2Ba2CaCu2O8/LaAlO3高温超导薄膜内的应变对其微波表面电阻影响的研究.  , 2008, 57(2): 1183-1189. doi: 10.7498/aps.57.1183
    [17] 李 鹤, 李学东, 李 娟, 吴春亚, 孟志国, 熊绍珍, 张丽珠. 表面修饰改善溶液法金属诱导晶化薄膜稳定性与均匀性研究.  , 2008, 57(4): 2476-2480. doi: 10.7498/aps.57.2476
    [18] 黄金华, 张 琨, 潘 楠, 高志伟, 王晓平. 表面修饰ZnO纳米线紫外光响应的增强效应.  , 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [19] 张红娣, 安玉凯, 麦振洪, 高 炬, 胡凤霞, 王 勇, 贾全杰. La0.8Ca0.2MnO3/SrTiO3薄膜厚度对其结构及磁学性能的影响.  , 2007, 56(9): 5347-5352. doi: 10.7498/aps.56.5347
    [20] 张开骁, 陈敦军, 沈 波, 陶亚奇, 吴小山, 徐 金, 张 荣, 郑有炓. 表面钝化前后Al0.22Ga0.78N/GaN异质结势垒层应变的高温特性.  , 2006, 55(3): 1402-1406. doi: 10.7498/aps.55.1402
计量
  • 文章访问数:  6314
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-25
  • 修回日期:  2015-10-25
  • 刊出日期:  2016-01-20

/

返回文章
返回
Baidu
map