-
采用基于密度泛函理论的第一性原理模拟计算, 研究了在应变作用下两层半氢化氮化镓纳米薄膜的电学和磁学性质. 没有表面修饰的两层氮化镓纳米薄膜的原子结构为类石墨结构, 并具有间接能隙. 然而, 当两层氮化镓纳米薄膜的一侧表面镓原子被氢化时, 该纳米薄膜却依然保持纤锌矿结构, 并且展示出铁磁性半导体特性. 在应变作用下, 两层半氢化氮化镓纳米薄膜的能隙可进行有效调控, 并且它将会由半导体性质可转变为半金属性质或金属性质. 这主要是由于应变对表面氮原子的键间交互影响和p-p轨道直接交互影响之间协调作用的结果. 该研究成果为实现低维半导体纳米材料的多样化提供了有效的调控手段, 为其应用于新型电子纳米器件和自旋电子器件提供重要的理论指导.In this paper, first-principles calculations based on the density functional theory, are performed to investigate the effects of strain field on the electronic and magnetic properties of two-bilayer gallium nitride (GaN) nanosheets. The two-bilayer GaN nanosheet without surface modification forms a planar graphitic structure, whereas that with full hydrogenation for the surface Ga and N atoms adopts the energetically more favorable wurtzite structure. Surface hydrogenation is proven to be an effective way to induce a transition from indirect to direct band gap. The bare and fully-hydrogenated GaN nanosheets are nonmagnetic semiconductors. When only one-side Ga or N atoms on the surface are hydrogenated, the semihydrogenated two-bilayer GaN nanosheets will preserve their initial wurtzite structures. The two-bilayer GaN nanosheet with one-side N atoms hydrogenated transforms into a nonmagnetic metal, while that with one-side Ga atoms hydrogenated (H-GaN) is a ferromagnetic semiconductor with band gaps of 3.99 and 0.06 eV in the spin-up and spin-down states, respectively. We find that the two-bilayer H-GaN nanosheets will maintain ferromagnetic states under a strain field and the band gaps Eg in spin-up and spin-down states are a function of strain . As the tensile strain is +6%, the band gap in spin-up state reduces to 2.71 eV, and that in spin-down state increases to 0.41 eV for the two-bilayer H-GaN nanosheets. Under the compressive strain field, the two-bilayer H-GaN nanosheets will show a transition from semiconducting to half-metallici state under compression of -1%, where the spin-up state remains as a band gap insulator with band gap of 4.16 eV and the spin-down state is metallic. Then the two-bilayer H-GaN nanosheets will turn into fully-metallic properties with bands crossing the Fermi level in the spin-up and spin-down states under a compressive strain of -6%. Moreover, the value of binding energy Eb for the two-bilayer H-GaN nanosheet decreases (increases) monotonically with increasing compressive (tensile) strain. It is found that although hydrogenation on one-side Ga atoms of the two-bilayer H-GaN nanosheets is preferred to be under compressive strain, the two-bilayer H-GaN nanosheets are still the energetically favorable structures. The physical mechanisms of strain field tuning band gaps in the spin-up and spin-down states for the two-bilayer H-GaN nanosheets are mainly induced by the combined effects of through-bond and p-p direct interactions. Our results demonstrate that the predicted diverse and tunable electronic and magnetic properties may lead to the potential application of GaN nanosheets in novel electronic and spintronic nanodevices.
[1] Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B, Burns M 1994 J. Appl. Phys. 76 1363
[2] Liu Y A, Zhuang Y Q, Du L, Su Y H 2013 Acta Phys. Sin. 62 140703 (in Chinese) [刘宇安, 庄奕琪, 杜磊, 苏亚慧 2013 62 140703]
[3] Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang J F, Yang H 2012 Chin. Phys. Lett. 29 068801
[4] Ma Y D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Appl. Surf. Sci. 257 7845
[5] Lopez-Bezanilla A, Ganesh P, Kent P R C, Sumpter B G 2014 Nano Research 7 63
[6] Goldberger J, He R R, Zhang Y F, Lee S, Yan H Q, Choi H J, Yang P D 2003 Nature 422 599
[7] Bae S Y, Seo H W, Park J, Yang H, Kim H, Kim S 2003 Appl. Phys. Lett. 82 4564
[8] Xiang X, Cao C B, Huang F L, Lv R T, Zhu H S 2004 J. Cryst. Growth 263 25
[9] Duan X F, Lieber C M 2000 J. Am. Chem. Soc. 122 188
[10] Guo R H, Lu T P, Jia Z G, Shang L, Zhang H, Wang R, Zhai G M, Xu B S 2015 Acta Phys. Sin. 64 127305 (in Chinese) [郭瑞花, 卢太平, 贾志刚, 尚林, 张华, 王蓉, 翟光美, 许并社 2015 64 127305]
[11] Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T, Ciraci S 2009 Phys. Rev. B 80 155453
[12] Freeman C L, Claeyssens F, Allan N L, Harding J H 2006 Phys. Rev. Lett. 96 066102
[13] Gao N, Zheng W T, Jiang Q 2012 Phys. Chem. Chem. Phys. 14 257
[14] Chen X F, Lian J S, Jiang Q 2012 Phys. Rev. B 86 125437
[15] Zhang W X, Li T, Gong S B, He C, Duan L 2015 Phys. Chem. Chem. Phys. 17 10919
[16] Li S, Wu Y F, Liu W, Zhao Y H 2014 Chem. Phys. Lett. 609 161
[17] Tang Q, Cui Y, Li Y F, Zhou Z, Chen Z F 2011 J. Phys. Chem. C 115 1724
[18] Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y, Jena P 2009 Nano Lett. 9 3867
[19] Dai Q Q, Zhu Y F, Jiang Q 2012 Phys. Chem. Chem. Phys. 14 1253
[20] Xiao W Z, Wang L L, Xu L, Wan Q, Pan A L, Deng H Q 2011 Phys. Status Solidi B 248 1442
[21] Xiao M X, Yao T Z, Ao Z M, Wei P, Wang D H, Song H Y 2015 Phys. Chem. Chem. Phys. 17 8692
[22] Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102]
[23] MaY D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Nanoscale 3 2301
[24] Dong L, Yadav S K, Ramprasad R, Alpay S P 2010 Appl. Phys. Lett. 96 202106
[25] Delley B 1990 J. Chem. Phys. 92 508
[26] Delley B 2000 J. Chem. Phys. 113 7756
[27] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Delley B 2002 Phys. Rev. B 66 155125
[29] Koelling D D, Harmon B N 1977 J. Phys. C 10 3107
[30] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[31] Li H M, Dai J, Li J, Zhang S, Zhou J, Zhang L J, Chu W S, Chen D L, Zhao H F, Yang J L, Wu Z Y 2010 J. Phys. Chem. C 114 11390
[32] Zhou J, Wang Q, Sun Q, Jena P 2010 Phys. Rev. B 81 085442
[33] Tang Q, Li Y F, Zhou Z, Chen Y S, Chen Z F 2010 ACS Appl. Mater. Inter. 2 2442
-
[1] Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B, Burns M 1994 J. Appl. Phys. 76 1363
[2] Liu Y A, Zhuang Y Q, Du L, Su Y H 2013 Acta Phys. Sin. 62 140703 (in Chinese) [刘宇安, 庄奕琪, 杜磊, 苏亚慧 2013 62 140703]
[3] Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang J F, Yang H 2012 Chin. Phys. Lett. 29 068801
[4] Ma Y D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Appl. Surf. Sci. 257 7845
[5] Lopez-Bezanilla A, Ganesh P, Kent P R C, Sumpter B G 2014 Nano Research 7 63
[6] Goldberger J, He R R, Zhang Y F, Lee S, Yan H Q, Choi H J, Yang P D 2003 Nature 422 599
[7] Bae S Y, Seo H W, Park J, Yang H, Kim H, Kim S 2003 Appl. Phys. Lett. 82 4564
[8] Xiang X, Cao C B, Huang F L, Lv R T, Zhu H S 2004 J. Cryst. Growth 263 25
[9] Duan X F, Lieber C M 2000 J. Am. Chem. Soc. 122 188
[10] Guo R H, Lu T P, Jia Z G, Shang L, Zhang H, Wang R, Zhai G M, Xu B S 2015 Acta Phys. Sin. 64 127305 (in Chinese) [郭瑞花, 卢太平, 贾志刚, 尚林, 张华, 王蓉, 翟光美, 许并社 2015 64 127305]
[11] Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T, Ciraci S 2009 Phys. Rev. B 80 155453
[12] Freeman C L, Claeyssens F, Allan N L, Harding J H 2006 Phys. Rev. Lett. 96 066102
[13] Gao N, Zheng W T, Jiang Q 2012 Phys. Chem. Chem. Phys. 14 257
[14] Chen X F, Lian J S, Jiang Q 2012 Phys. Rev. B 86 125437
[15] Zhang W X, Li T, Gong S B, He C, Duan L 2015 Phys. Chem. Chem. Phys. 17 10919
[16] Li S, Wu Y F, Liu W, Zhao Y H 2014 Chem. Phys. Lett. 609 161
[17] Tang Q, Cui Y, Li Y F, Zhou Z, Chen Z F 2011 J. Phys. Chem. C 115 1724
[18] Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y, Jena P 2009 Nano Lett. 9 3867
[19] Dai Q Q, Zhu Y F, Jiang Q 2012 Phys. Chem. Chem. Phys. 14 1253
[20] Xiao W Z, Wang L L, Xu L, Wan Q, Pan A L, Deng H Q 2011 Phys. Status Solidi B 248 1442
[21] Xiao M X, Yao T Z, Ao Z M, Wei P, Wang D H, Song H Y 2015 Phys. Chem. Chem. Phys. 17 8692
[22] Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102]
[23] MaY D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Nanoscale 3 2301
[24] Dong L, Yadav S K, Ramprasad R, Alpay S P 2010 Appl. Phys. Lett. 96 202106
[25] Delley B 1990 J. Chem. Phys. 92 508
[26] Delley B 2000 J. Chem. Phys. 113 7756
[27] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Delley B 2002 Phys. Rev. B 66 155125
[29] Koelling D D, Harmon B N 1977 J. Phys. C 10 3107
[30] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[31] Li H M, Dai J, Li J, Zhang S, Zhou J, Zhang L J, Chu W S, Chen D L, Zhao H F, Yang J L, Wu Z Y 2010 J. Phys. Chem. C 114 11390
[32] Zhou J, Wang Q, Sun Q, Jena P 2010 Phys. Rev. B 81 085442
[33] Tang Q, Li Y F, Zhou Z, Chen Y S, Chen Z F 2010 ACS Appl. Mater. Inter. 2 2442
计量
- 文章访问数: 6314
- PDF下载量: 218
- 被引次数: 0