-
Since the discovery of graphene, mechanical exfoliation technology has become one of the important methods of preparing high-quality two-dimensional (2D) materials. This technology shows some unique advantages in the study of the intrinsic properties of 2D materials. However, traditional mechanical exfoliation method also has some obvious deficiencies, such as low yield ratio and small size of the resulting single-or few-layer flakes, which hinders the research progress in the field of 2D materials. In recent years, we made a series of breakthroughs in mechanical exfoliation technology, and independently developed a new type of mechanical exfoliation method with universality. The core of this new method is to enhance the van der Waals interaction between the layered material and the substrate by changing multiple parameters in the exfoliation process, thereby increasing the yield ratio and area of the monolayer. Taking graphene for example, we can now increase the size of graphene from micron to millimeter, increase over 100000 times in area, and yield ratio more than 95%, in the meantime graphene still maintains very high quality. This new mechanical exfoliation method shows great universality, and high-quality monolayer flake with a size of millimeters or more has been obtained in dozens of layered material systems including MoS2, WSe2, MoTe2, and Bi2212. More importantly, some special structures can be fabricated by optimizing exfoliation parameters, such as bubble and wrinkle structures, which paves the way for the study of these special material systems. Many scientific problems are still worth exploring in the mechanical exfoliation technology, and the breakthrough of this technology will greatly promote the research progress in the field of 2D materials.
[1] Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162
[2] Iijima S 1991 Nature 354 56
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[4] Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
[5] Zhang H 2015 ACS Nano 9 9451
[6] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[7] Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406
[8] Pan Y, Shi D X, Gao H J 2007 Chin. Phys. B 16 3151
[9] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E 2009 Science 324 1312
[10] Bhaviripudi S, Jia X, Dresselhaus M S, Kong J 2010 Nano Lett. 10 4128
[11] Liu Q, Yu C, He Z, Gu G, Wang J, Zhou C, Guo J, Gao X, Feng Z 2018 Appl. Surf. Sci. 454 68
[12] Yu J, Li J, Zhang W, Chang H 2015 Chem. Sci. 6 6705
[13] Xu C, Wang L, Liu Z, Chen L, Guo J, Kang N, Ma X L, Cheng H M, Ren W 2015 Nat. Mater. 14 1135
[14] Virojanadara C, Syväjarvi M, Yakimova R, Johansson L, Zakharov A, Balasubramanian T 2008 Phys. Rev. B 78 245403
[15] Colombo L, Li X, Han B, Magnuson C, Cai W, Zhu Y, Ruoff R S 2010 ECS Trans. 28 109
[16] Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y 2011 Nature 469 389
[17] Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh K P 2011 ACS Nano 5 9927
[18] Arthur J R 2002 Surf. Sci. 500 189
[19] Cho A Y, Arthur J 1975 Prog. Solid State Ch. 10 157
[20] Moreau E, Godey S, Ferrer F, Vignaud D, Wallart X, Avila J, Asensio M, Bournel F, Gallet J J 2010 Appl. Phys. Lett. 97 241907
[21] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K 2012 Nano Lett. 12 3507
[22] Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S, Gao H J 2014 Adv. Mater. 26 4820
[23] Qing Z H 2017 Acta Phys. Sin. 66 216802 (in Chinese)[秦志辉 2017 66 216802]
[24] Zhang G, Qin H, Teng J, Guo J, Guo Q, Dai X, Fang Z, Wu K 2009 Appl. Phys. Lett. 95 053114
[25] Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L, Jia J F 2011 Science 332 1410
[26] Dines M B 1975 Mater. Res. Bull. 10 287
[27] Joensen P, Frindt R, Morrison S R 1986 Mater. Res. Bull. 21 457
[28] Wang Q, O'Hare D 2012 Chem. Rev. 112 4124
[29] Ma R, Sasaki T 2010 Adv. Mater. 22 5082
[30] Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992
[31] Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, Coleman J N 2013 Science 340 1420
[32] Niu L, Coleman J N, Zhang H, Shin H, Chhowalla M, Zheng Z 2016 Small 12 272
[33] Paton K R, Varrla E, Backes C, Smith R J, Khan U, O'Neill A, Boland C, Lotya M, Istrate O M, King P 2014 Nat. Mater. 13 624
[34] Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I, Holland B, Byrne M, Gun'Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N 2008 Nat. Nanotechnol. 3 563
[35] Jayasena B, Subbiah S 2011 Nanoscale Res. Lett. 6 95
[36] Shukla A, Kumar R, Mazher J, Balan A 2009 Solid State Commun. 149 718
[37] Moldt T, Eckmann A, Klar P, Morozov S V, Zhukov A A, Novoselov K S, Casiraghi C 2011 ACS Nano 5 7700
[38] Geim A K 2009 Science 324 1530
[39] Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L, Racke D A, Neupane M R, Wickramaratne D, Lake R K, Parkinson B A 2014 ACS Nano 8 10743
[40] Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J, Sutter P 2015 ACS Nano 9 10612
[41] Huang Y, Qiao J, He K, Bliznakov S, Sutter E, Chen X, Luo D, Meng F, Su D, Decker J 2016 Chem. Mater. 28 8330
[42] Huang Y, Wang X, Zhang X, Chen X, Li B, Wang B, Huang M, Zhu C, Zhang X, Bacsa W S 2018 Phys. Rev. Lett. 120 186104
[43] Huang Y, Sutter E, Wu L, Xu H, Bao L H, Gao H J, Zhou X J, Sutter P 2018 ACS Appl. Mater. Inter. 10 23198
[44] Novoselov K S, Geim A K, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov, A A 2005 Nature 438 197
[45] Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201
[46] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820
[47] Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229
[48] Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238
[49] Ferrari A C, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S 2006 Phys. Rev. Lett. 97 187401
[50] Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A 2005 Proc. Natl. Acad. Sci. USA 102 10451
[51] Georgiou T, Britnell L, Blake P, Gorbachev R, Gholinia A, Geim A, Casiraghi C, Novoselov K 2011 Appl. Phys. Lett. 99 093103
[52] Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L 2008 Nano Lett. 8 2458
-
[1] Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162
[2] Iijima S 1991 Nature 354 56
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[4] Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
[5] Zhang H 2015 ACS Nano 9 9451
[6] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[7] Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406
[8] Pan Y, Shi D X, Gao H J 2007 Chin. Phys. B 16 3151
[9] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E 2009 Science 324 1312
[10] Bhaviripudi S, Jia X, Dresselhaus M S, Kong J 2010 Nano Lett. 10 4128
[11] Liu Q, Yu C, He Z, Gu G, Wang J, Zhou C, Guo J, Gao X, Feng Z 2018 Appl. Surf. Sci. 454 68
[12] Yu J, Li J, Zhang W, Chang H 2015 Chem. Sci. 6 6705
[13] Xu C, Wang L, Liu Z, Chen L, Guo J, Kang N, Ma X L, Cheng H M, Ren W 2015 Nat. Mater. 14 1135
[14] Virojanadara C, Syväjarvi M, Yakimova R, Johansson L, Zakharov A, Balasubramanian T 2008 Phys. Rev. B 78 245403
[15] Colombo L, Li X, Han B, Magnuson C, Cai W, Zhu Y, Ruoff R S 2010 ECS Trans. 28 109
[16] Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y 2011 Nature 469 389
[17] Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh K P 2011 ACS Nano 5 9927
[18] Arthur J R 2002 Surf. Sci. 500 189
[19] Cho A Y, Arthur J 1975 Prog. Solid State Ch. 10 157
[20] Moreau E, Godey S, Ferrer F, Vignaud D, Wallart X, Avila J, Asensio M, Bournel F, Gallet J J 2010 Appl. Phys. Lett. 97 241907
[21] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K 2012 Nano Lett. 12 3507
[22] Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S, Gao H J 2014 Adv. Mater. 26 4820
[23] Qing Z H 2017 Acta Phys. Sin. 66 216802 (in Chinese)[秦志辉 2017 66 216802]
[24] Zhang G, Qin H, Teng J, Guo J, Guo Q, Dai X, Fang Z, Wu K 2009 Appl. Phys. Lett. 95 053114
[25] Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L, Jia J F 2011 Science 332 1410
[26] Dines M B 1975 Mater. Res. Bull. 10 287
[27] Joensen P, Frindt R, Morrison S R 1986 Mater. Res. Bull. 21 457
[28] Wang Q, O'Hare D 2012 Chem. Rev. 112 4124
[29] Ma R, Sasaki T 2010 Adv. Mater. 22 5082
[30] Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992
[31] Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, Coleman J N 2013 Science 340 1420
[32] Niu L, Coleman J N, Zhang H, Shin H, Chhowalla M, Zheng Z 2016 Small 12 272
[33] Paton K R, Varrla E, Backes C, Smith R J, Khan U, O'Neill A, Boland C, Lotya M, Istrate O M, King P 2014 Nat. Mater. 13 624
[34] Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I, Holland B, Byrne M, Gun'Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N 2008 Nat. Nanotechnol. 3 563
[35] Jayasena B, Subbiah S 2011 Nanoscale Res. Lett. 6 95
[36] Shukla A, Kumar R, Mazher J, Balan A 2009 Solid State Commun. 149 718
[37] Moldt T, Eckmann A, Klar P, Morozov S V, Zhukov A A, Novoselov K S, Casiraghi C 2011 ACS Nano 5 7700
[38] Geim A K 2009 Science 324 1530
[39] Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L, Racke D A, Neupane M R, Wickramaratne D, Lake R K, Parkinson B A 2014 ACS Nano 8 10743
[40] Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J, Sutter P 2015 ACS Nano 9 10612
[41] Huang Y, Qiao J, He K, Bliznakov S, Sutter E, Chen X, Luo D, Meng F, Su D, Decker J 2016 Chem. Mater. 28 8330
[42] Huang Y, Wang X, Zhang X, Chen X, Li B, Wang B, Huang M, Zhu C, Zhang X, Bacsa W S 2018 Phys. Rev. Lett. 120 186104
[43] Huang Y, Sutter E, Wu L, Xu H, Bao L H, Gao H J, Zhou X J, Sutter P 2018 ACS Appl. Mater. Inter. 10 23198
[44] Novoselov K S, Geim A K, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov, A A 2005 Nature 438 197
[45] Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201
[46] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820
[47] Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229
[48] Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238
[49] Ferrari A C, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S 2006 Phys. Rev. Lett. 97 187401
[50] Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A 2005 Proc. Natl. Acad. Sci. USA 102 10451
[51] Georgiou T, Britnell L, Blake P, Gorbachev R, Gholinia A, Geim A, Casiraghi C, Novoselov K 2011 Appl. Phys. Lett. 99 093103
[52] Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L 2008 Nano Lett. 8 2458
Catalog
Metrics
- Abstract views: 10855
- PDF Downloads: 812
- Cited By: 0