On the efforts of enhancing the spin orbit interaction (SOI) of graphene for seeking the dissipationless quantum spin Hall devices, unique Kane-Mele type SOI and high mobility samples are desired. However, common external decoration often introduces extrinsic Rashba-type SOI and simultaneous impurity scattering. Here we show, by the EDTA-Dy molecule dressing, the Kane-Mele type SOI is mimicked with even improved carrier mobility. It is evidenced by the suppressed weak localization at equal carrier densities and simultaneous Elliot-Yafet spin relaxation. The extracted spin scattering time is monotonically dependent on the carrier elastic scattering time. Improved quantum Hall plateaus can be even seen after the external operation. This is attributed to the spin-flexural phonon coupling induced by the enhanced graphene ripples, as revealed by the in-plane magnetotransport measurement.