Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Morphology characterization and growth mechanism of Au-catalyzed GaAs and GaAs/InGaAs nanowires

Yuan Hui-Bo Li Lin Zeng Li-Na Zhang Jing Li Zai-Jin Qu Yi Yang Xiao-Tian Chi Yao-Dan Ma Xiao-Hui Liu Guo-Jun

Citation:

Morphology characterization and growth mechanism of Au-catalyzed GaAs and GaAs/InGaAs nanowires

Yuan Hui-Bo, Li Lin, Zeng Li-Na, Zhang Jing, Li Zai-Jin, Qu Yi, Yang Xiao-Tian, Chi Yao-Dan, Ma Xiao-Hui, Liu Guo-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The nanowires (NWs) of heterostructure with GaAs based materials have received great attention in the past decades, due to their potential applications in electronics and optoelectronics. Therefore it becomes more and more important to investigate the technology of fabricating NWs with GaAs based materials. In our study, Au-catalyzed GaAs nanowires and GaAs/InGaAs heterostructures are grown by metal-organic chemical vapor deposition following the vapor-liquid-solid mechanism. The growth process, which is vital for morphology research, is found to be strongly affected by growth temperature via scanning electron microscope testing. The GaAs NWs are grown at varying temperatures to investigate the influence of temperature on NW morphology. It is observed that the axial growth decreases with growth temperature increasing while radial growth exhibits the opposite trend, which causes the length of NWs to decrease with temperature increasing at the same time. As radial growth rate is inhibited and radial growth rate is enhanced at relatively high temperature, the geometry of GaAs nanowires turns from columnar to taper and eventually pyramid with temperature rising. The GaAs/InGaAs nanowire heterostructures with distinct heterostructure interfaces, which are columnar and vertical to substrates, are obtained and analyzed. Energy dispersive X-ray spectroscopy (EDX) is used for element monitoring while radial growth is hardly observed during axial heterostructure fabrication, indicating well controlled fabrication technology of NWs growth. The InGaAs segments of axial heterostructures are grown after GaAs segments and occur at the bottom of NWs instead on the top, the analysis of which shows that In atoms would take part in the growth of NWs via migrating at the surface of substrate preferentially, rather than being absorbed in Au-Ga alloy catalytic droplets. Radial heterostructures of GaAs/InGaAs nanowires are grown with GaAs as cores and InGaAs as shells, respectively. Because the axial growth rate would be restricted with temperature increasing, the growth temperature of radial heterostructures is higher than that of axial heterostructures. A small amount of axial growth occurs during the growth of radial heterostructures as indicated by the EDX monitoring result, which is analyzed to be caused by the diffusion of In atoms at radial growth temperature, resulting in a segment of InGaAs nanowire at the interface of nanowires and Au-Ga alloy catalytic droplets.
      Corresponding author: Li Lin, licust@126.com;zhangjingcust@hotmail.com ; Zhang Jing, licust@126.com;zhangjingcust@hotmail.com
    • Funds: Project supported by the Natural Science Foundation of Hainan Province, China (Grant Nos. 2018CXTD336, 618MS055, 618QN241), the National Natural Science Foundation of China (Grant No. 61864002), and the Foundation of Changchun University of Science and Technology, China (Grant Nos. 000586, 000943).
    [1]

    Cui J G, Zhang X, Yan X, Li J S, Huang Y Q, Ren X M 2014 Acta Phys. Sin. 63 136103 (in Chinese) [崔建功, 张霞, 颜鑫, 李军帅, 黄永清, 任晓敏 2014 63 136103]

    [2]

    Shen L F, Yip S, Yang Z X, Fang M, Hung T F, Pun E Y B, Ho J C 2015 Sci. Rep. 5 16871

    [3]

    Tomioka K, Fukui T 2014 Appl. Phys. Lett. 104 073507

    [4]

    Sadaf S M, Ra Y H, Trung N H P, Djavid M, Mi Z T 2015 Nano Lett. 15 6696

    [5]

    Tan H, Fan C, Ma L, Zhang X H, Fan P, Yang Y K, Hu W, Zhou H, Zhuang X J, Zhu X L, Pan A L 2016 Nano-Micro Lett. 8 29

    [6]

    Tchernycheva M, Messanvi A, Bugallo A D L, Jacopin G, Lavenus P, Rigutti L, Zhang H, Halioua Y, Julien F H, Eymery J, Durand C 2014 Nano Lett. 14 3515

    [7]

    Gustiono D, Wibowo E, Othaman Z 2013 J. Phys.: Conf. Ser. 423 012047

    [8]

    Zhao C J, Sun S J 2014 Mater. Rev. B 28 34 (in Chinese) [赵翠俭, 孙素静 2014 材料导报 28 34]

    [9]

    Chuang L C, Moewe M, Chase C, Kobayashi N P, Chang H C 2007 Appl. Phys. Lett. 90 043115

    [10]

    Ye X, Huang H, Ren X M, Guo J W, Huang Y Q, Wang Q, Zhang X 2011 Acta Phys. Sin. 60 036103 (in Chinese) [叶显, 黄辉, 任晓敏, 郭经纬, 黄永清, 王琦, 张霞 2011 60 036103]

    [11]

    Othaman Z, Wibowo E, Sakrani S 2013 Adv. Mater. Res. 667 224

    [12]

    Wang N, Cai Y, Zhang R Q 2008 Mat. Sci. Eng. R 60 1

    [13]

    Borgstrm M, Deppert K, Samuelson L, Seifert W 2004 J. Cryst. Growth. 260 18

    [14]

    Yuan H B, Li L, Li Z J, Wang Y, Qu Y, Ma X H, Liu G J 2018 Chem. Phys. Lett. 692 28

    [15]

    Zhang Y Y, Sanchez A M, Sun Y, Wu J, Aagesen M, Huo S G, Kim D Y, Jurczak P, Xu X L, Liu H Y 2016 Nano Lett. 16 1237

    [16]

    Soci C, Bao X Y, Aplin D P R, Wang D L 2008 Nano Lett. 8 4275

    [17]

    Hiruma K, Yazawa M, Katsuyama T, Ogawa K, Haraguchi K, Koguchi M, Kakibayashi H 1995 J. Appl. Phys. 77 447

    [18]

    Dubrovskii V G, Sibirev N V, Cirlin G E, Tchernycheva M, Harmand J C, Ustinov V M 2008 Phys. Rev. E 77 031606

    [19]

    L X L, Zhang X, Liu X L, Yan X, Cui J G, Li J S, Huang Y Q, Ren X M 2013 Chin. Phys. B 22 066101

    [20]

    Ameruddin A S, Fonseka H A, Caroff P, Wong L J, Veld R L O H, Boland J L, Johnston M B, Tan H H, Jagadish C 2015 Nanotechnology 26 205604

    [21]

    Li A, Zou J, Han X D 2016 Sci. China: Mater. 59 51

  • [1]

    Cui J G, Zhang X, Yan X, Li J S, Huang Y Q, Ren X M 2014 Acta Phys. Sin. 63 136103 (in Chinese) [崔建功, 张霞, 颜鑫, 李军帅, 黄永清, 任晓敏 2014 63 136103]

    [2]

    Shen L F, Yip S, Yang Z X, Fang M, Hung T F, Pun E Y B, Ho J C 2015 Sci. Rep. 5 16871

    [3]

    Tomioka K, Fukui T 2014 Appl. Phys. Lett. 104 073507

    [4]

    Sadaf S M, Ra Y H, Trung N H P, Djavid M, Mi Z T 2015 Nano Lett. 15 6696

    [5]

    Tan H, Fan C, Ma L, Zhang X H, Fan P, Yang Y K, Hu W, Zhou H, Zhuang X J, Zhu X L, Pan A L 2016 Nano-Micro Lett. 8 29

    [6]

    Tchernycheva M, Messanvi A, Bugallo A D L, Jacopin G, Lavenus P, Rigutti L, Zhang H, Halioua Y, Julien F H, Eymery J, Durand C 2014 Nano Lett. 14 3515

    [7]

    Gustiono D, Wibowo E, Othaman Z 2013 J. Phys.: Conf. Ser. 423 012047

    [8]

    Zhao C J, Sun S J 2014 Mater. Rev. B 28 34 (in Chinese) [赵翠俭, 孙素静 2014 材料导报 28 34]

    [9]

    Chuang L C, Moewe M, Chase C, Kobayashi N P, Chang H C 2007 Appl. Phys. Lett. 90 043115

    [10]

    Ye X, Huang H, Ren X M, Guo J W, Huang Y Q, Wang Q, Zhang X 2011 Acta Phys. Sin. 60 036103 (in Chinese) [叶显, 黄辉, 任晓敏, 郭经纬, 黄永清, 王琦, 张霞 2011 60 036103]

    [11]

    Othaman Z, Wibowo E, Sakrani S 2013 Adv. Mater. Res. 667 224

    [12]

    Wang N, Cai Y, Zhang R Q 2008 Mat. Sci. Eng. R 60 1

    [13]

    Borgstrm M, Deppert K, Samuelson L, Seifert W 2004 J. Cryst. Growth. 260 18

    [14]

    Yuan H B, Li L, Li Z J, Wang Y, Qu Y, Ma X H, Liu G J 2018 Chem. Phys. Lett. 692 28

    [15]

    Zhang Y Y, Sanchez A M, Sun Y, Wu J, Aagesen M, Huo S G, Kim D Y, Jurczak P, Xu X L, Liu H Y 2016 Nano Lett. 16 1237

    [16]

    Soci C, Bao X Y, Aplin D P R, Wang D L 2008 Nano Lett. 8 4275

    [17]

    Hiruma K, Yazawa M, Katsuyama T, Ogawa K, Haraguchi K, Koguchi M, Kakibayashi H 1995 J. Appl. Phys. 77 447

    [18]

    Dubrovskii V G, Sibirev N V, Cirlin G E, Tchernycheva M, Harmand J C, Ustinov V M 2008 Phys. Rev. E 77 031606

    [19]

    L X L, Zhang X, Liu X L, Yan X, Cui J G, Li J S, Huang Y Q, Ren X M 2013 Chin. Phys. B 22 066101

    [20]

    Ameruddin A S, Fonseka H A, Caroff P, Wong L J, Veld R L O H, Boland J L, Johnston M B, Tan H H, Jagadish C 2015 Nanotechnology 26 205604

    [21]

    Li A, Zou J, Han X D 2016 Sci. China: Mater. 59 51

  • [1] Kang Yu-Bin, Tang Ji-Long, Li Ke-Xue, Li Xiang, Hou Xiao-Bing, Chu Xue-Ying, Lin Feng-Yuan, Wang Xiao-Hua, Wei Zhi-Peng. Studies of Be, Si doping regulated GaAs nanowires for phase transition and optical properties. Acta Physica Sinica, 2021, 70(20): 207804. doi: 10.7498/aps.70.20210782
    [2] Wang Peng-Hua, Tang Ji-Long, Kang Yu-Bin, Fang Xuan, Fang Dan, Wang Deng-Kui, Lin Feng-Yuan, Wang Xiao-Hua, Wei Zhi-Peng. Crystal structure and optical properties of GaAs nanowires. Acta Physica Sinica, 2019, 68(8): 087803. doi: 10.7498/aps.68.20182116
    [3] Feng Qiu-Ju, Li Fang, Li Tong-Tong, Li Yun-Zheng, Shi Bo, Li Meng-Ke, Liang Hong-Wei. Growth and characterization of grid-like β-Ga2O3 nanowires by electric field assisted chemical vapor deposition method. Acta Physica Sinica, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [4] Zhang Yong, Shi Yi-Min, Bao You-Zhen, Yu Xia, Xie Zhong-Xiang, Ning Feng. Effect of surface passivation on the electronic properties of GaAs nanowire:A first-principle study. Acta Physica Sinica, 2017, 66(19): 197302. doi: 10.7498/aps.66.197302
    [5] Yang Xiu-Qing, Hu Yi, Zhang Jing-Lu, Wang Yan-Qiu, Pei Chun-Mei, Liu Fei. Preparation of boron nanowires using AuPd nanoparticles as catalyst and their field emission behavios. Acta Physica Sinica, 2014, 63(4): 048102. doi: 10.7498/aps.63.048102
    [6] Cui Jian-Gong, Zhang Xia, Yan Xin, Li Jun-Shuai, Huang Yong-Qing, Ren Xiao-Min. Selective-area growth of GaAs and GaAs/InxGa1-xAs/GaAs nanowires by MOCVD. Acta Physica Sinica, 2014, 63(13): 136103. doi: 10.7498/aps.63.136103
    [7] Wu Liang-Liang, Zhao De-Gang, Li Liang, Le Ling-Cong, Chen Ping, Liu Zong-Shun, Jiang De-Sheng. Influence of growth conditions on the lateral grain size of AlN film grown by metal-organic chemical vapor deposition. Acta Physica Sinica, 2013, 62(8): 086102. doi: 10.7498/aps.62.086102
    [8] Zhang Xiao-Qing, He Hao, Hu Ming-Lie, Yan Xin, Zhang Xia, Ren Xiao-Min, Wang Qing-Yue. Optical SHG properties of GaAs nanowires irradiated with multi-wavelength femto-second laser pulses. Acta Physica Sinica, 2013, 62(7): 076102. doi: 10.7498/aps.62.076102
    [9] Ye Xian, Huang Hui, Ren Xiao-Min, Guo Jing-Wei, Huang Yong-Qing, Wang Qi, Zhang Xia. Growths of InAs/GaAs and InAs/In x Ga1-x As/GaAs nanowire heterostructures. Acta Physica Sinica, 2011, 60(3): 036103. doi: 10.7498/aps.60.036103
    [10] Xing Hai-Ying, Fan Guang-Han, Yang Xue-Lin, Zhang Guo-Yi. Optical properties of GaMnN films grown by metal-organic chemical vapor deposition. Acta Physica Sinica, 2010, 59(1): 504-507. doi: 10.7498/aps.59.504
    [11] Yang Fan, Ma Jin, Kong Ling-Yi, Luan Cai-Na, Zhu Zhen. Structural, optical and electrical properties of Ga2(1-x)In2xO3 films prepared by metalorganic chemical vapor deposition. Acta Physica Sinica, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [12] Zhang Kai-Wang, Meng Li-Jun, Li Jun, Liu Wen-Liang, Tang Yi, Zhong Jian-Xin. Structure and thermal stability of gold nanowire encapsulated in carbon nanotube. Acta Physica Sinica, 2008, 57(7): 4347-4355. doi: 10.7498/aps.57.4347
    [13] Ye Fan, Cai Xing-Min, Wang Xiao-Ming, Zhao Jian-Guo, Xie Er-Qing. Low pressure chemical vapor deposition synthesis of InN nanowires and their field electron emission. Acta Physica Sinica, 2007, 56(4): 2342-2346. doi: 10.7498/aps.56.2342
    [14] Liu Shi-Feng, Qin Guo-Gang, You Li-Ping, Zhang Ji-Cai, Fu Zhu-Xi, Dai Lun. Synthesis of GaN nanowires and nano-pyramids in a two-hot-boat chemical vapor deposition system via an In-doping technique. Acta Physica Sinica, 2005, 54(9): 4329-4333. doi: 10.7498/aps.54.4329
    [15] Ma Hong, Zhu Guang-Xi, Chen Si-Hai, Yi Xin-Jian. MOVPE growth of 1310?nm polarizationinsensitive strained quantumwell semiconductor optical amplifiers*. Acta Physica Sinica, 2004, 53(12): 4257-4261. doi: 10.7498/aps.53.4257
    [16] Zeng Xiang-Bo, Liao Xian-Bo, Wang Bo, Diao Hong-Wei, Dai Song-Tao, Xiang Xian-Bi, Chang Xiu-Lan, Xu Yan-Yue, Hu Zhi-Hua, Hao Hui-Ying, Kong Guang-Lin. Boron-doped silicon nanowires grown by plasmaenhanced chemical vapor deposition. Acta Physica Sinica, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [17] Yan Xiao-Qin, Liu Zu-Qin, Tang Dong-Sheng, Ci Li-Jie, Liu Dong-Fang, Zhou Zhen-Ping, Liang Ying-Xin, Yuan Hua-Jun, Zhou Wei-Ya, Wang Gang. Effects of substrates on silicon oxide nanowires growth by thermal chemical vapor deposition. Acta Physica Sinica, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [18] HU YING. SiC NANOWIRES GROWN ON SILICON(100) WAFER BY MPCVD METHOD. Acta Physica Sinica, 2001, 50(12): 2452-2455. doi: 10.7498/aps.50.2452
    [19] CHEN XIAO-HUA, WU GUO-TAO, DENG FU-MING, WANG JIAN-XIONG, YANG HANG-SHENG, WANG MIAO, LU XIAO-NAN, PENG JING-CUI, LI WEN-ZHU. GROWING CARBON BUCKONIONS BY RADIO FREQUENCY PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
    [20] SUN LI, CHEN YAN-FENG, YU TAO, MING NAI-BEN, JIANG XIAO-MING, XIU LI-SONG. PREPARATION AND CHARACTERIZATION OF PbTiO3 THIN FILMS BY METALORGANIC CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 1996, 45(10): 1729-1736. doi: 10.7498/aps.45.1729
Metrics
  • Abstract views:  6615
  • PDF Downloads:  103
  • Cited By: 0
Publishing process
  • Received Date:  29 January 2018
  • Accepted Date:  05 June 2018
  • Published Online:  20 September 2019

/

返回文章
返回
Baidu
map