Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Demonstration of four-state memory structure with perpendicular magnetic anisotropy by spin-orbit torque

Sheng Yu Zhang Nan Wang Kai-You Ma Xing-Qiao

Citation:

Demonstration of four-state memory structure with perpendicular magnetic anisotropy by spin-orbit torque

Sheng Yu, Zhang Nan, Wang Kai-You, Ma Xing-Qiao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Current, instead of magnetic field, induced magnetization switching is very important for future spintronics in information storage or/and information processing. As one of the effective current-induced magnetization methods, spin-orbit torque (SOT) has aroused considerable interest because it has low-power consumption and can improve the device endurance. Normal metal (NM)/ferromagnetic metal (FM) are the common materials used for SOTs, where the NM denotes the materials with strong spin-orbit coupling such as Pt, Ta, W, etc. Owing to the spin Hall effect, the in-plane current in NM layer can be converted into a vertical spin current that exerts torques on the adjacent FM layers. Spin current can also come from the NM/FM interface charge-spin conversion due to interfacial asymmetry, exerting torques on the adjacent FM layers. Materials with in-plane and perpendicular magnetic anisotropy are used to study the SOT-induced magnetization switching. Compared with the memories using the in-plane ferromagnetic films, the magnetic memories using NM/FM multilayers with perpendicular magnetic anisotropy can have much high integration density. Currently the used information storage was based on the two-state memory cell. Owing to more than two states contained in one memory cell, multiple states memory manipulated by electric current could further benefit the higher-density memory. In this paper, a four-state memory unit is demonstrated by the influence of TaOx buffer layer on the magnetic anisotropy of Pt/Co/Pt multilayers. The memory unit consists of two regions. One is directly deposited on thermal oxide Si substrate[Pt(3 nm)/Co(0.47 nm)/Pt(1.5 nm)] and the other has a buffer layer of TaOx[TaOx(0.3 nm)/Pt(3 nm)/Co(0.47 nm)/Pt(1.5 nm)], thus leading to the difference in magnetic property between these two regions. According to the Z axis magnetic hysteresis loops of two regions, measured by polar magneto-optical Kerr effect, the coercivity of the region with TaOx is obtained to be 23 Oe and that without TaOx is 11 Oe. At the junction between two regions, the magnetic hysteresis loop shows the superposition of hysteresis loops of two regions, resulting in switching four times as the magnetic field changes. Under a fixed magnetic field along the current direction, the magnetization orientation of region with TaOx and that of region without TaOx are switched by spin-orbit torques with threshold currents of 5 mA and 1.5 mA respectively. The switching direction can be changed as the in-plane magnetic field changes to the opposite direction, which is one of the typical features of SOTs-induced magnetization switching. At the junction between two regions, through applying different-form current pulses to one conductive channel of the device, the magnetic state of the memory cell can be switched between four clear states. This kind of structure provides a new idea to design SOT multi-state memory devices.
      Corresponding author: Ma Xing-Qiao, xqma@sas.ustb.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303400), the National Natural Science Foundation of China (Grant Nos. 11174030, 11474272, 61774144), the Foundation of Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-JSC020, XDPB0603), and the K. C. Wong Education Foundation, China.
    [1]

    Wang P, Jiang S W, Luan Z Z, Zhou L F, Ding H F, Zhou Y, Tao X D, Wu D 2016 Appl. Phys. Lett. 109 112406

    [2]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189

    [3]

    Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H, Wang K 2017 Nat. Mater. 16 712

    [4]

    Wu D, Yu G, Shao Q, Li X, Wu H, Wong K L, Zhang Z, Han X, Khalili Amiri P, Wang K L 2016 Appl. Phys. Lett. 108 202406

    [5]

    Yang M, Cai K, Ju H, Edmonds K W, Yang G, Liu S, Li B, Zhang B, Sheng Y, Wang S, Ji Y, Wang K 2016 Sci. Rep. 6 20778

    [6]

    Yang S, Peng R, Jiang T, Liu Y, Feng L, Wang J, Chen L, Li X, Nan C 2014 Adv. Mater. 26 7091

    [7]

    Zhang B, Meng K K, Yang M Y, Edmonds K W, Zhang H, Cai K M, Sheng Y, Zhang N, Ji Y, Zhao J H, Zheng H Z, Wang K Y 2016 Sci. Rep. 6 28458

    [8]

    Yan Y, Wan C, Zhou X, Shi G, Cui B, Han J, Fan Y, Han X, Wang K L, Pan F, Song C 2016 Adv. Electron. Mater. 2 1600219

    [9]

    Liu L, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R 2012 Phys. Rev. Lett. 109 96602

    [10]

    Zhang N, Zhang B, Yang M, Cai K, Sheng Y, Li Y, Deng Y, Wang K 2017 Acta Phys. Sin. 66 27501

    [11]

    Avci C O, Mann M, Tan A J, Gambardella P, Beach G S D 2017 Appl. Phys. Lett. 110 203506

    [12]

    Yang Y, Xu Y, Zhang X, Wang Y, Zhang S, Li R W, Mirshekarloo M S, Yao K, Wu Y 2016 Phys. Rev. B 93 94402

    [13]

    Yu J, Qiu X, Wu Y, Yoon J, Deorani P 2016 Sci. Rep. 6 32629

    [14]

    Wang K Y, Edmonds K W, Irvine A C, Tatara G, Ranieri E D, Wunderlich J, Olejnik K, Rushforth A W, Campion R P, Williams D A, Foxon C T, Gallagher B L 2010 Appl. Phys. Lett. 97 262102

    [15]

    Chernyshov A, Overby M, Liu X, Furdyna J K, Lyanda G Y, Rokhinson L P 2009 Nat. Phys. 5 656

    [16]

    Li Y, Cao Y F, Wei G N, Li Y, Ji Y, Wang K Y, Edmonds K W, Campion R P, Rushforth A W, Foxon C T, Gallagher B L 2013 Appl. Phys. Lett. 103 22401

    [17]

    Li Y, Luo W, Zhu L, Zhao J, Wang K 2015 J. Magn. Magn. Mater. 375 148

    [18]

    Zhou H, Fan X, Ma L, Zhang Q, Cui L, Zhou S, Gui Y S, Hu C M, Xue D 2016 Phys. Rev. B 94 134421

    [19]

    Wang H L, Du C H, Pu Y, Adur R, Hammel P C, Yang F Y 2014 Phys. Rev. Lett. 112 197201

    [20]

    Emori S, Bauer U, Woo S, Beach G S D 2014 Appl. Phys. Lett. 105 2012

    [21]

    Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M, Tang J, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548

    [22]

    Brataas A, Kent A D, Ohno H 2012 Nat. Mater. 11 372

    [23]

    Petrie J R, Wieland K A, Timmerwilke J M, Barron S C, Burke R A, Newburgh G A, Burnette J E, Fischer G A, Edelstein A S 2015 Appl. Phys. Lett. 106 142403

    [24]

    Diller E, Miyashita S, Sitti M 2012 IEEE Int. Conf. Intell. Robot. Syst. 2325

    [25]

    Emori S, Beach G S D 2011 J. Appl. Phys. 110 33919

    [26]

    Taniguchi T, Mitani S, Hayashi M 2015 Phys. Rev. B 92 24428

  • [1]

    Wang P, Jiang S W, Luan Z Z, Zhou L F, Ding H F, Zhou Y, Tao X D, Wu D 2016 Appl. Phys. Lett. 109 112406

    [2]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189

    [3]

    Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H, Wang K 2017 Nat. Mater. 16 712

    [4]

    Wu D, Yu G, Shao Q, Li X, Wu H, Wong K L, Zhang Z, Han X, Khalili Amiri P, Wang K L 2016 Appl. Phys. Lett. 108 202406

    [5]

    Yang M, Cai K, Ju H, Edmonds K W, Yang G, Liu S, Li B, Zhang B, Sheng Y, Wang S, Ji Y, Wang K 2016 Sci. Rep. 6 20778

    [6]

    Yang S, Peng R, Jiang T, Liu Y, Feng L, Wang J, Chen L, Li X, Nan C 2014 Adv. Mater. 26 7091

    [7]

    Zhang B, Meng K K, Yang M Y, Edmonds K W, Zhang H, Cai K M, Sheng Y, Zhang N, Ji Y, Zhao J H, Zheng H Z, Wang K Y 2016 Sci. Rep. 6 28458

    [8]

    Yan Y, Wan C, Zhou X, Shi G, Cui B, Han J, Fan Y, Han X, Wang K L, Pan F, Song C 2016 Adv. Electron. Mater. 2 1600219

    [9]

    Liu L, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R 2012 Phys. Rev. Lett. 109 96602

    [10]

    Zhang N, Zhang B, Yang M, Cai K, Sheng Y, Li Y, Deng Y, Wang K 2017 Acta Phys. Sin. 66 27501

    [11]

    Avci C O, Mann M, Tan A J, Gambardella P, Beach G S D 2017 Appl. Phys. Lett. 110 203506

    [12]

    Yang Y, Xu Y, Zhang X, Wang Y, Zhang S, Li R W, Mirshekarloo M S, Yao K, Wu Y 2016 Phys. Rev. B 93 94402

    [13]

    Yu J, Qiu X, Wu Y, Yoon J, Deorani P 2016 Sci. Rep. 6 32629

    [14]

    Wang K Y, Edmonds K W, Irvine A C, Tatara G, Ranieri E D, Wunderlich J, Olejnik K, Rushforth A W, Campion R P, Williams D A, Foxon C T, Gallagher B L 2010 Appl. Phys. Lett. 97 262102

    [15]

    Chernyshov A, Overby M, Liu X, Furdyna J K, Lyanda G Y, Rokhinson L P 2009 Nat. Phys. 5 656

    [16]

    Li Y, Cao Y F, Wei G N, Li Y, Ji Y, Wang K Y, Edmonds K W, Campion R P, Rushforth A W, Foxon C T, Gallagher B L 2013 Appl. Phys. Lett. 103 22401

    [17]

    Li Y, Luo W, Zhu L, Zhao J, Wang K 2015 J. Magn. Magn. Mater. 375 148

    [18]

    Zhou H, Fan X, Ma L, Zhang Q, Cui L, Zhou S, Gui Y S, Hu C M, Xue D 2016 Phys. Rev. B 94 134421

    [19]

    Wang H L, Du C H, Pu Y, Adur R, Hammel P C, Yang F Y 2014 Phys. Rev. Lett. 112 197201

    [20]

    Emori S, Bauer U, Woo S, Beach G S D 2014 Appl. Phys. Lett. 105 2012

    [21]

    Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M, Tang J, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548

    [22]

    Brataas A, Kent A D, Ohno H 2012 Nat. Mater. 11 372

    [23]

    Petrie J R, Wieland K A, Timmerwilke J M, Barron S C, Burke R A, Newburgh G A, Burnette J E, Fischer G A, Edelstein A S 2015 Appl. Phys. Lett. 106 142403

    [24]

    Diller E, Miyashita S, Sitti M 2012 IEEE Int. Conf. Intell. Robot. Syst. 2325

    [25]

    Emori S, Beach G S D 2011 J. Appl. Phys. 110 33919

    [26]

    Taniguchi T, Mitani S, Hayashi M 2015 Phys. Rev. B 92 24428

  • [1] Jin Zhe-Jun-Yu, Zeng Zhao-Zhuo, Cao Yun-Shan, Yan Peng. Magnon Hall effect. Acta Physica Sinica, 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [2] Xia Yong-Shun, Yang Xiao-Kuo, Dou Shu-Qing, Cui Huan-Qing, Wei Bo, Liang Bu-Jia, Yan Xu. Ultra-low power magneto-elastic analog-to-digital converter based on magnetic tunnel junctions and bicomponent multiferroic nanomagnet. Acta Physica Sinica, 2024, 73(13): 137502. doi: 10.7498/aps.73.20240129
    [3] Xiong Yi-Nong, Wu Chuang-Wen, Ren Chuan-Tong, Meng De-Quan, Chen Shi-Wei, Liang Shi-Heng. Research progress of spin orbit torque of two-dimensional magnetic materials. Acta Physica Sinica, 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [4] Zhao Chen-Rui, Wei Yun-Xin, Liu Ting-Ting, Qin Ming-Hui. Dynamics of ferrimagnetic domain walls driven by sinusoidal microwave magnetic field. Acta Physica Sinica, 2023, 72(20): 208502. doi: 10.7498/aps.72.20230913
    [5] Liu Nan-Shu, Wang Cong, Ji Wei. Recent research advances in two-dimensional magnetic materials. Acta Physica Sinica, 2022, 71(12): 127504. doi: 10.7498/aps.71.20220301
    [6] Jiang Xiao-Hong, Qin Si-Chen, Xing Zi-Yue, Zou Xing-Yu, Deng Yi-Fan, Wang Wei, Wang Lin. Study on physical properties and magnetism controlling of two-dimensional magnetic materials. Acta Physica Sinica, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [7] Niu Peng-Bin, Luo Hong-Gang. Interplay between Majorana fermion and impurity in thermal-driven transport model. Acta Physica Sinica, 2021, 70(11): 117401. doi: 10.7498/aps.70.20202241
    [8] Wang Peng-Cheng, Cao Yi, Xie Hong-Guang, Yin Yao, Wang Wei, Wang Ze-Ying, Ma Xin-Chen, Wang Lin, Huang Wei. Magnetic properties of layered chiral topological magnetic material Cr1/3NbS2. Acta Physica Sinica, 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [9] Xia Jing, Han Zong-Yi, Song Yi-Fan, Jiang Wen-Jing, Lin Liu-Rong, Zhang Xi-Chao, Liu Xiao-Xi, Zhou Yan. Overview of magnetic skyrmion-based devices and applications. Acta Physica Sinica, 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [10] Zhao Wei-Sheng, Huang Yang-Qi, Zhang Xue-Ying, Kang Wang, Lei Na, Zhang You-Guang. Overview and advances in skyrmionics. Acta Physica Sinica, 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [11] Zhang Nan, Zhang Bao, Yang Mei-Yin, Cai Kai-Ming, Sheng Yu, Li Yu-Cai, Deng Yong-Cheng, Wang Kai-You. Progress of electrical control magnetization reversal and domain wall motion. Acta Physica Sinica, 2017, 66(2): 027501. doi: 10.7498/aps.66.027501
    [12] Xiao Jia-Xing, Lu Jun, Zhu Li-Jun, Zhao Jian-Hua. Perpendicular magnetic properties of ultrathin L10-Mn1.67Ga films grown by molecular-beam epitaxy. Acta Physica Sinica, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [13] Gu Xiao-Fang, Qian Xuan, Ji Yang, Chen Lin, Zhao Jian-Hua. Observation of current-induced polarization in (Ga,Mn)As via magneto-optic Kerr measurement. Acta Physica Sinica, 2012, 61(3): 037801. doi: 10.7498/aps.61.037801
    [14] Yang Wei, Ji Yang, Luo Hai-Hui, Ruan Xue-Zhong, Wang Wei-Zhu, Zhao Jian-Hua. Electronic noise of diluted magnetic semiconductor (Ga,Mn)As around Curie point. Acta Physica Sinica, 2009, 58(12): 8560-8565. doi: 10.7498/aps.58.8560
    [15] Xu Jian-Wei, Wang Shun-Jin. Relativistic mean field theory of electron and first, second-order Rashba effects. Acta Physica Sinica, 2009, 58(7): 4878-4882. doi: 10.7498/aps.58.4878
    [16] Ren Min, Zhang Lei, Hu Jiu-Ning, Deng Ning, Chen Pei-Yi. A macroscopic model of current-induced magnetization switching based on magnetic dynamic equation. Acta Physica Sinica, 2007, 56(5): 2863-2867. doi: 10.7498/aps.56.2863
    [17] Ren Jun-Feng, Zhang Yu-Bin, Xie Shi-Jie. Current spin polarization in ferromagnetic/organic semiconductor/ferromagnetic system. Acta Physica Sinica, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [18] Ren Jun-Feng, Fu Ji-Yong, Liu De-Sheng, Xie Shi-Jie. Diffusion theory of spin injection into organic polymers*. Acta Physica Sinica, 2004, 53(11): 3814-3817. doi: 10.7498/aps.53.3814
    [19] Sun Feng-Wei, Deng Li, Shou Qian, Liu Lu-Ning, Wen Jin-Hui, Lai Tian-Shu, Lin Wei-Zhu. Femtosecond spectral studies of electron spin injection and relaxation in AlGaAs / GaAs MQW. Acta Physica Sinica, 2004, 53(9): 3196-3199. doi: 10.7498/aps.53.3196
    [20] Qin Jian-Hua, Guo Yong, Chen Xin-Yi, Gu Bing-Lin. A study on spin-polarized transport properties in magnetic-electric barrier st ructures. Acta Physica Sinica, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
Metrics
  • Abstract views:  6811
  • PDF Downloads:  234
  • Cited By: 0
Publishing process
  • Received Date:  29 January 2018
  • Accepted Date:  05 March 2018
  • Published Online:  05 June 2018

/

返回文章
返回
Baidu
map