-
Ferrimagnetic domain walls have received more and more attention because of their interesting physics and potential applications in future spintronic devices, particularly attributing their non-zero net magnetization and ultrafast dynamics. Exploring effective methods of driving domain walls with low energy consumption and high efficiency can provide important information for experimental design and device development. In this work, we study theoretically and numerically the dynamics of ferrimagnetic domain wall driven by the sinusoidal microwave magnetic field using the collective coordinate theory and Landau-Lifshitz-Gilbert simulations of atomistic spin model. It is revealed that the microwave field drives the propagation of the domain wall when the frequency falls into an appropriate range, which allows one to modulate the domain wall dynamics through tuning field frequency. Specifically, below the critical frequency, the domain wall velocity is proportional to the field frequency and the net angular momentum, while above the critical frequency, the domain wall velocity decreases rapidly to zero . The physical mechanisms of the results are discussed in detail, and the influences of the biaxial anisotropy and other parameters on the velocity of domain wall are studied. It is suggested that the wall dynamics can be effectively regulated by adjusting the basic magnetic structure and magnetic anisotropy, in addition to the external microwave field frequency. This work uncovers the interesting dynamics of ferrimagnetic domain wall driven by sinusoidal microwave magnetic field, which is helpful for designing domain wall-based spintronic device.
[1] Žutić I, Fabian J, Sarma S Das 2004 Rev. Mod. Phys. 76 323Google Scholar
[2] 赵巍胜, 张博宇, 彭守仲 2022 自旋电子科学与技术 (北京: 人民邮电出版社) 第6页
Zhao W S, Zhang B Y, Peng S Z 2022 Spintronic Science and Technology (Beijing: Posts and Telecommunications Press) p6
[3] 韩秀峰 2014 自旋电子学导论(上卷) (北京: 科学出版社) 第10页
Han X F 2014 Introduction to Spintronics (Vol. 1) (Beijing: Science Press) p10
[4] Chen X Z, Zarzuela R, Zhang J, Song C, Zhou X F, Shi G Y, Li F, Zhou H A, Jiang W J, Pan F, Tserkovnyak Y 2018 Phys. Rev. Lett. 120 207204Google Scholar
[5] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005Google Scholar
[6] Yu W, Lan J, Xiao J 2018 Phys. Rev. B 98 144422Google Scholar
[7] Wen D L, Chen Z Y, Li W H, Qin M H, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Liu J M 2020 Phys. Rev. Res. 2 013166Google Scholar
[8] Jin Z, Liu T T, Li W H, Zhang X M, Hou Z P, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Qin M H, Liu J M 2020 Phys. Rev. B 102 054419Google Scholar
[9] Chen Z Y, Qin M H, Liu J M 2019 Phys. Rev. B 100 020402(RGoogle Scholar
[10] Zhang Y L, Chen Z Y, Yan Z R, Chen D Y, Fan Z, Qin M H 2018 Appl. Phys. Lett. 113 112403Google Scholar
[11] Selzer S, Atxitia U, Ritzmann U, Hinzke D, Nowak U 2016 Phys. Rev. Lett. 117 107201Google Scholar
[12] Tveten E G, Qaiumzadeh A, Brataas A 2014 Phys. Rev. Lett. 112 147204Google Scholar
[13] Jin Z, Meng C Y, Liu T T, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Qin M H, Liu J M 2021 Phys. Rev. B 104 054419Google Scholar
[14] Zvezdin A K, Gareeva Z V, Zvezdin K A 2020 J. Magn. Magn. Mater. 509 166876Google Scholar
[15] Li W H, Jin Z, Wen D L, Zhang X M, Qin M H, Liu J M 2020 Phys. Rev. B 101 024414Google Scholar
[16] Kim K J, Kim S K, Hirata Y, Oh S H, Tono T, Kim D H, Okuno T, Ham W S, Kim S, Go G, Tserkovnyak Y, Tsukamoto A, Moriyama T, Lee K J, Ono T 2017 Nat. Mater. 16 1187Google Scholar
[17] Oh S H, Kim S K, Xiao J, Lee K J 2019 Phys. Rev. B 100 174403Google Scholar
[18] Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach G S D 2018 Nat. Nanotechnol. 13 1154Google Scholar
[19] Caretta L, Oh S H, Fakhrul T, Lee D K, Lee B H, Kim S K, Ross C A, Lee K J, Beach G S D 2020 Science. 370 1438Google Scholar
[20] Sun C, Yang H, Jalil M B A 2020 Phys. Rev. B 102 134420Google Scholar
[21] Yuan H Y, Cao Y, Kamra A, Duine R A, Yan P 2022 Phys. Rep. 965 1Google Scholar
[22] Yu H, Xiao J, Schultheiss H 2021 Phys. Rep. 905 1Google Scholar
[23] Oh S H, Kim S K, Lee D K, Go G, Kim K J, Ono T, Tserkovnyak Y, Lee K J 2017 Phys. Rev. B 96 100407(RGoogle Scholar
[24] Martínez E, Raposo V, Alejos Ó 2019 J. Magn. Magn. Mater. 491 165545Google Scholar
[25] Wang X G, Guo G H, Nie Y Z, Wang D W, Zeng Z M, Li Z X, Tang W 2014 Phys. Rev. B 89 144418Google Scholar
[26] Chen Z Y, Yan Z R, Zhang Y L, Qin M H, Fan Z, Lu X B, Gao X S, Liu J M 2018 New J. Phys. 20 063003Google Scholar
[27] Jin M, Hong I S, Kim D H, Lee K J, Kim S K 2021 Phys. Rev. B 104 184431Google Scholar
[28] Liu T T, Hu Y F, Liu Y, Jin Z J Y, Tang Z H, Qin M H 2022 Rare Met. 41 3815Google Scholar
[29] Wadley P, Howells B, Železný J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmond K, Gallagher B L, Jungwirth T 2016 Science 351 587Google Scholar
-
图 4 不同频率下, 畴壁面角ϕ振荡, 红线表示微波场的相位 (a) ω = 0.035, δs = –0.0218和0.0218; (b) ω = 0.21, δs = –0.0218; (c) ω = 0.24, δs = –0.0218
Figure 4. The domain wall angle ϕ and phase position (red line) of microwave field as functions of time: (a) ω = 0.035, δs = –0.0218 and 0.0218; (b) ω = 0.21, δs = –0.0218; (c) ω = 0.24, δs = –0.0218.
表 1 模拟选择的参数, 参数4为角动量补偿点TA, 净自旋密度δs = 0
Table 1. Parameters chosen for the simulations, the fourth parameter set corresponds to the angular momentum compensation point TA with the net spin density δs = 0.
参数 1 2 3 4 5 6 7 M1 ( μs ) 1.13 1.12 1.11 1.10 1.09 1.08 1.07 M2 ( μs ) 1.06 1.04 1.02 1.0 0.98 0.96 0.94 δs ( μs/γ ) –0.03273 –0.0218 –0.0109 0 0.0109 0.0218 0.03273 -
[1] Žutić I, Fabian J, Sarma S Das 2004 Rev. Mod. Phys. 76 323Google Scholar
[2] 赵巍胜, 张博宇, 彭守仲 2022 自旋电子科学与技术 (北京: 人民邮电出版社) 第6页
Zhao W S, Zhang B Y, Peng S Z 2022 Spintronic Science and Technology (Beijing: Posts and Telecommunications Press) p6
[3] 韩秀峰 2014 自旋电子学导论(上卷) (北京: 科学出版社) 第10页
Han X F 2014 Introduction to Spintronics (Vol. 1) (Beijing: Science Press) p10
[4] Chen X Z, Zarzuela R, Zhang J, Song C, Zhou X F, Shi G Y, Li F, Zhou H A, Jiang W J, Pan F, Tserkovnyak Y 2018 Phys. Rev. Lett. 120 207204Google Scholar
[5] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005Google Scholar
[6] Yu W, Lan J, Xiao J 2018 Phys. Rev. B 98 144422Google Scholar
[7] Wen D L, Chen Z Y, Li W H, Qin M H, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Liu J M 2020 Phys. Rev. Res. 2 013166Google Scholar
[8] Jin Z, Liu T T, Li W H, Zhang X M, Hou Z P, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Qin M H, Liu J M 2020 Phys. Rev. B 102 054419Google Scholar
[9] Chen Z Y, Qin M H, Liu J M 2019 Phys. Rev. B 100 020402(RGoogle Scholar
[10] Zhang Y L, Chen Z Y, Yan Z R, Chen D Y, Fan Z, Qin M H 2018 Appl. Phys. Lett. 113 112403Google Scholar
[11] Selzer S, Atxitia U, Ritzmann U, Hinzke D, Nowak U 2016 Phys. Rev. Lett. 117 107201Google Scholar
[12] Tveten E G, Qaiumzadeh A, Brataas A 2014 Phys. Rev. Lett. 112 147204Google Scholar
[13] Jin Z, Meng C Y, Liu T T, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Qin M H, Liu J M 2021 Phys. Rev. B 104 054419Google Scholar
[14] Zvezdin A K, Gareeva Z V, Zvezdin K A 2020 J. Magn. Magn. Mater. 509 166876Google Scholar
[15] Li W H, Jin Z, Wen D L, Zhang X M, Qin M H, Liu J M 2020 Phys. Rev. B 101 024414Google Scholar
[16] Kim K J, Kim S K, Hirata Y, Oh S H, Tono T, Kim D H, Okuno T, Ham W S, Kim S, Go G, Tserkovnyak Y, Tsukamoto A, Moriyama T, Lee K J, Ono T 2017 Nat. Mater. 16 1187Google Scholar
[17] Oh S H, Kim S K, Xiao J, Lee K J 2019 Phys. Rev. B 100 174403Google Scholar
[18] Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach G S D 2018 Nat. Nanotechnol. 13 1154Google Scholar
[19] Caretta L, Oh S H, Fakhrul T, Lee D K, Lee B H, Kim S K, Ross C A, Lee K J, Beach G S D 2020 Science. 370 1438Google Scholar
[20] Sun C, Yang H, Jalil M B A 2020 Phys. Rev. B 102 134420Google Scholar
[21] Yuan H Y, Cao Y, Kamra A, Duine R A, Yan P 2022 Phys. Rep. 965 1Google Scholar
[22] Yu H, Xiao J, Schultheiss H 2021 Phys. Rep. 905 1Google Scholar
[23] Oh S H, Kim S K, Lee D K, Go G, Kim K J, Ono T, Tserkovnyak Y, Lee K J 2017 Phys. Rev. B 96 100407(RGoogle Scholar
[24] Martínez E, Raposo V, Alejos Ó 2019 J. Magn. Magn. Mater. 491 165545Google Scholar
[25] Wang X G, Guo G H, Nie Y Z, Wang D W, Zeng Z M, Li Z X, Tang W 2014 Phys. Rev. B 89 144418Google Scholar
[26] Chen Z Y, Yan Z R, Zhang Y L, Qin M H, Fan Z, Lu X B, Gao X S, Liu J M 2018 New J. Phys. 20 063003Google Scholar
[27] Jin M, Hong I S, Kim D H, Lee K J, Kim S K 2021 Phys. Rev. B 104 184431Google Scholar
[28] Liu T T, Hu Y F, Liu Y, Jin Z J Y, Tang Z H, Qin M H 2022 Rare Met. 41 3815Google Scholar
[29] Wadley P, Howells B, Železný J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmond K, Gallagher B L, Jungwirth T 2016 Science 351 587Google Scholar
Catalog
Metrics
- Abstract views: 2634
- PDF Downloads: 82
- Cited By: 0