Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evolutions of different crystalline textures in Sm-Fe film fabricated under high magnetic field and subsequent tuning magnetic properties

Li Guo-Jian Chang Ling Liu Shi-Ying Li Meng-Meng Cui Wei-Bin Wang Qiang

Citation:

Evolutions of different crystalline textures in Sm-Fe film fabricated under high magnetic field and subsequent tuning magnetic properties

Li Guo-Jian, Chang Ling, Liu Shi-Ying, Li Meng-Meng, Cui Wei-Bin, Wang Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to tune the crystalline texture evolution and magnetic properties of the Sm-Fe film, molecular beam vapor deposition method is used to fabricate the Sm-Fe films. Sm content, thickness, and high magnetic field are used to affect the crystalline texture and magnetic properties. X-ray diffraction is used to analyze the texture evolution. Atomic force microscope is used to observe the surface morphology and roughness. Energy-dispersive X-ray spectroscopy is used to measure the compositions of the film. Vibrating sample magnetometer is used to test the magnetic properties. The results show that the crystalline textures are tuned through the Sm content. The crystalline texture evolution and high magnetic field have significant effect on the magnetic properties of the Sm-Fe film. The Sm-Fe film with 5.8% atomic content is of bcc crystal structure and is of amorphous structure with 33.0% Sm. Neither the thickness nor the high magnetic field has an influence on the crystalline texture. The surface roughness and particle size on the surface of the amorphous film are smaller than those of the crystal film. A 6 T high magnetic field increases the surface particle size and reduces the surface roughness. Saturation magnetization Ms of the amorphous film is 47.6% lower than that of the crystal film (1466 emu/cm3, 1 emu/cm3=410-10 T). The 6 T high magnetic field reduces the Ms of crystal and amorphous film by about 50%. The coercivity Hc values of the Sm-Fe films are in a range of 6-130 Oe (1 Oe=103/(4) A/m). The Hc of the amorphous film is higher than that of the crystal film. The 6 T high magnetic field increases the Hc of the crystal film and reduces the Hc of the amorphous film. The highest reduction is 95%. The anisotropy of the crystal film transforms to isotropy of the amorphous film. High magnetic field increases the anisotropy of the crystal film. The squareness of the crystal film is much higher than that of the amorphous film. High magnetic field has a significant effect on the measured magnetic field to obtain saturation magnetization in the film. This measured saturation magnetic field increases in the amorphous film and decreases in the crystal film after the high magnetic field has been exerted during the film growth. These results indicate that the Sm content and high magnetic field can be used to tune the crystal textures and magnetic properties of the Sm-Fe films.
      Corresponding author: Wang Qiang, wangq@mail.neu.edu.cn
    • Funds: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 51425401) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. N160905001, N160907001).
    [1]

    Mills D L, Bland J A C 2006 Nanomagnetism Ultrathin Films Multilayers and Nanostructures (Amsterdam: Elsevier)

    [2]

    Dai D S, Fang R Y, Liu Z X, Wan H, Lan J, Rao X L, Ji Y P 1986 Acta Phys. Sin. 35 1502 (in Chinese) [戴道生, 方瑞宜, 刘尊孝, 万虹, 兰健, 饶晓雷, 纪玉平 1986 35 1502]

    [3]

    Gheorghe N G, Lungu G A, Husanu M A, Costescu R M, Macovei D, Teodorescu C M 2013 Appl. Surf. Sci. 267 106

    [4]

    Saito T, Furutani T 2009 J. Appl. Phys. 105 07A716

    [5]

    Chen C J, Huang J C, Chou H S, Lai Y H, Chang L W, Du X H, Chu J P, Nieh T G 2009 J. Alloy. Compd. 483 337

    [6]

    Li G, Li M, Wang J, Du J, Wang K, Wang Q 2017 J. Magn. Magn. Mater. 423 353

    [7]

    Fang R Y, Dai D S, Rao X L, Liu Z X, Lan J, Wan H 1988 Acta Phys. Sin. 37 1065 (in Chinese) [方瑞宜, 戴道生, 饶晓雷, 刘尊孝, 兰健, 万虹 1988 37 1065]

    [8]

    Hwang S W, Kim J, Lim S U, Kim C K, Yoon C S 2007 Mater. Sci. Eng. A 449 378

    [9]

    Sakano S, Matsumura Y 2017 Mater. Trans. 58 813

    [10]

    Choi Y S, Lee S R, Han S H 1998 J. Appl. Phys. 83 7270

    [11]

    Seong Y H, Kim K S, Yu S C 1999 IEEE Trans. Magn. 35 3808

    [12]

    Nishi Y, Matsumura Y, Kadowaki A, Masuda S 2005 Mater. Trans. 46 3063

    [13]

    Kim T W, Lim S H, Gambino R J 2001 J. Appl. Phys. 89 7212

    [14]

    Takato Y, Mitsuru O, Fumiyoshi K, Masaaki F 2013 EPJ Web Conf. 40 06007

    [15]

    Wang L, Du Z F, Zhao D L 2007 J. Rare Earths 25 444

    [16]

    Wang Q, He J C 2014 Material Science Under High Magnetic Field (Beijing: Science Press) (in Chinese) [王强, 赫冀成2014 强磁场材料科学 (北京: 科学出版社)]

    [17]

    Li G, Du J, Wang H, Wang Q, Ma Y, He J 2014 Mater. Lett. 133 53

    [18]

    Brinza F, Sulitanu N 2003 Sens. Actuators A 106 310

    [19]

    Lim S H, Han S H, Kim H J, Song S H, Lee D 2000 J. Appl. Phys. 87 5801

    [20]

    Zhao Y P, Gamache R M, Wang G C, Lu T M 2001 J. Appl. Phys. 89 1325

    [21]

    Hedayati K, Nabiyouni G 2014 J. Appl. Phys. A 116 1605

    [22]

    Suzuki K, Herzer G 2012 Scr. Mater. 67 548

    [23]

    Ruiz J M, Zhang X X, Ferrater C, Tejada J 1995 Phys. Rev. B 52 10202

    [24]

    Du J, Li G, Wang Q, Ma Y, Cao Y, He J 2015 Vacuum 121 88

    [25]

    Tinouche M, Kharmouche A, Aktaş B, Yildiz F, Kobay A N 2015 J. Supercond. Nov. Magn. 28 921

  • [1]

    Mills D L, Bland J A C 2006 Nanomagnetism Ultrathin Films Multilayers and Nanostructures (Amsterdam: Elsevier)

    [2]

    Dai D S, Fang R Y, Liu Z X, Wan H, Lan J, Rao X L, Ji Y P 1986 Acta Phys. Sin. 35 1502 (in Chinese) [戴道生, 方瑞宜, 刘尊孝, 万虹, 兰健, 饶晓雷, 纪玉平 1986 35 1502]

    [3]

    Gheorghe N G, Lungu G A, Husanu M A, Costescu R M, Macovei D, Teodorescu C M 2013 Appl. Surf. Sci. 267 106

    [4]

    Saito T, Furutani T 2009 J. Appl. Phys. 105 07A716

    [5]

    Chen C J, Huang J C, Chou H S, Lai Y H, Chang L W, Du X H, Chu J P, Nieh T G 2009 J. Alloy. Compd. 483 337

    [6]

    Li G, Li M, Wang J, Du J, Wang K, Wang Q 2017 J. Magn. Magn. Mater. 423 353

    [7]

    Fang R Y, Dai D S, Rao X L, Liu Z X, Lan J, Wan H 1988 Acta Phys. Sin. 37 1065 (in Chinese) [方瑞宜, 戴道生, 饶晓雷, 刘尊孝, 兰健, 万虹 1988 37 1065]

    [8]

    Hwang S W, Kim J, Lim S U, Kim C K, Yoon C S 2007 Mater. Sci. Eng. A 449 378

    [9]

    Sakano S, Matsumura Y 2017 Mater. Trans. 58 813

    [10]

    Choi Y S, Lee S R, Han S H 1998 J. Appl. Phys. 83 7270

    [11]

    Seong Y H, Kim K S, Yu S C 1999 IEEE Trans. Magn. 35 3808

    [12]

    Nishi Y, Matsumura Y, Kadowaki A, Masuda S 2005 Mater. Trans. 46 3063

    [13]

    Kim T W, Lim S H, Gambino R J 2001 J. Appl. Phys. 89 7212

    [14]

    Takato Y, Mitsuru O, Fumiyoshi K, Masaaki F 2013 EPJ Web Conf. 40 06007

    [15]

    Wang L, Du Z F, Zhao D L 2007 J. Rare Earths 25 444

    [16]

    Wang Q, He J C 2014 Material Science Under High Magnetic Field (Beijing: Science Press) (in Chinese) [王强, 赫冀成2014 强磁场材料科学 (北京: 科学出版社)]

    [17]

    Li G, Du J, Wang H, Wang Q, Ma Y, He J 2014 Mater. Lett. 133 53

    [18]

    Brinza F, Sulitanu N 2003 Sens. Actuators A 106 310

    [19]

    Lim S H, Han S H, Kim H J, Song S H, Lee D 2000 J. Appl. Phys. 87 5801

    [20]

    Zhao Y P, Gamache R M, Wang G C, Lu T M 2001 J. Appl. Phys. 89 1325

    [21]

    Hedayati K, Nabiyouni G 2014 J. Appl. Phys. A 116 1605

    [22]

    Suzuki K, Herzer G 2012 Scr. Mater. 67 548

    [23]

    Ruiz J M, Zhang X X, Ferrater C, Tejada J 1995 Phys. Rev. B 52 10202

    [24]

    Du J, Li G, Wang Q, Ma Y, Cao Y, He J 2015 Vacuum 121 88

    [25]

    Tinouche M, Kharmouche A, Aktaş B, Yildiz F, Kobay A N 2015 J. Supercond. Nov. Magn. 28 921

Metrics
  • Abstract views:  6877
  • PDF Downloads:  107
  • Cited By: 0
Publishing process
  • Received Date:  28 January 2018
  • Accepted Date:  12 February 2018
  • Published Online:  05 May 2018

/

返回文章
返回
Baidu
map