-
Based on the pseudopotential method and the local-density approximation, the thermodynamic properties of a weakly interacting Fermi gas in a strong magnetic filed are studied, the integrated analytical expressions of thermodynamic quantities of the system are derived, and the effects of magnetic field as well as interparticle interactions on the thermodynamic properties of the system are analyzed. It is shown that at both high and low temperatures, magnetic field may adjust the effects of interacting. At low temperatures, magnetic field can lower the chemical potential, total energy and heat capacity of the system compared with the situation of Fermi gas in the absence of the magnetic field. The repulsive interactions may increase the chemical potential, but reduce the total energy and heat capacity of the system compared with the situation of non-interacting Fermi gas. At high temperatures, magnetic field as well as repulsive interactions can reduce the total energy and increase heat capacity of the system, moreover, strong magnetic field may change the effects of interaction on the total energy and the heat capacity of the system.
-
Keywords:
- strong magnetic field /
- weakly interacting /
- Fermi gas /
- thermodynamic property
[1] Regal C A, Ticknor C, Bohn J L, Jin D S 2003 Nature 424 47
[2] [3] Xiong H W, Liu S J, Zhang W P, Zhan M S 2005 Phys. Rev. Lett. 95 120401
[4] Dong H, Ma Y L 2009 Chin. Phys. B 18 0715
[5] [6] [7] Qin F, Chen J S 2009 Phys. Rev. A 79 043625
[8] Xiong H W, Liu S J, Zhan M S 2006 Phys. Rev. A 74 033602
[9] [10] [11] Chen J S, Cheng C M, Li J R, Wang Y P 2007 Phys. Rev. A 76 033617
[12] Men F D, Fan Z L 2010 Chin. Phys. B 19 030502
[13] [14] Kinast J, Hemmer S L, Gehm M E, Turlapov A, Thomas J E 2004 Phys. Rev. Lett. 92 150402
[15] [16] [17] Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Denschlag J H, Grimm R 2004 Phys. Rev. Lett. 92 203201
[18] Kinast J, Turlapov A, Thomas J E, Chen Q J, Stajic J, Levin K 2005 Science 307 1296
[19] [20] Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H, Ketterle W 2005 Nature 435 1047
[21] [22] Su G Z, Chen L X 2004 Acta Phys. Sin. 53 984 (in Chinese) [苏国珍、 陈丽璇 2004 53 984]
[23] [24] [25] Landau L D, Lifshitz E M 1999 Statistical Physics (Part Ⅰ) (3rd ed) (Oxford: Pergamon Press) p173
[26] [27] Men F D 2006 Acta Phys. Sin. 55 1622 (in Chinese) [门福殿 2006 55 1622]
-
[1] Regal C A, Ticknor C, Bohn J L, Jin D S 2003 Nature 424 47
[2] [3] Xiong H W, Liu S J, Zhang W P, Zhan M S 2005 Phys. Rev. Lett. 95 120401
[4] Dong H, Ma Y L 2009 Chin. Phys. B 18 0715
[5] [6] [7] Qin F, Chen J S 2009 Phys. Rev. A 79 043625
[8] Xiong H W, Liu S J, Zhan M S 2006 Phys. Rev. A 74 033602
[9] [10] [11] Chen J S, Cheng C M, Li J R, Wang Y P 2007 Phys. Rev. A 76 033617
[12] Men F D, Fan Z L 2010 Chin. Phys. B 19 030502
[13] [14] Kinast J, Hemmer S L, Gehm M E, Turlapov A, Thomas J E 2004 Phys. Rev. Lett. 92 150402
[15] [16] [17] Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Denschlag J H, Grimm R 2004 Phys. Rev. Lett. 92 203201
[18] Kinast J, Turlapov A, Thomas J E, Chen Q J, Stajic J, Levin K 2005 Science 307 1296
[19] [20] Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H, Ketterle W 2005 Nature 435 1047
[21] [22] Su G Z, Chen L X 2004 Acta Phys. Sin. 53 984 (in Chinese) [苏国珍、 陈丽璇 2004 53 984]
[23] [24] [25] Landau L D, Lifshitz E M 1999 Statistical Physics (Part Ⅰ) (3rd ed) (Oxford: Pergamon Press) p173
[26] [27] Men F D 2006 Acta Phys. Sin. 55 1622 (in Chinese) [门福殿 2006 55 1622]
Catalog
Metrics
- Abstract views: 8008
- PDF Downloads: 711
- Cited By: 0