-
In recent years, the application of high magnetic field in material processing has received much attention from many researchers. However, most studies focus on single-phase solidification or eutectic solidification. The effect of high magnetic field on peritectic alloy is rarely reported. In this study, the solidification experiments on a Mn-56.5 wt%Sb peritectic alloy are carried out under high magnetic fields up to 11.5 T. According to the temperature curve recorded during solidification, it is revealed that high magnetic field increases the liquidus temperature and this rise increases with magnetic flux density increasing. The liquidus temperature rises by about 3 ℃ when the magnetic flux density is 11.5 T. On the contrary, no obvious change in peritectic temperature is found. In addition, the solidified microstructure is analyzed by quantitative metallographic analysis and the result shows that the amount of MnSb phase decreases markedly by the application of high magnetic field. This result consists with the change of phase transition temperature. By the X-ray diffraction, it is found that the c axis of MnSb crystal and (311) plane of Mn2Sb are perpendicular and parallel to the direction of high magnetic field,respectively. Furthermore, the solidification experiments with different cooling rates are also carried out. The quantitative metallographic analysis reveals that the effect of high magnetic field on solidified microstructure is affected by cooling rate. With the increase in cooling rate, the effect of high magnetic field on the fraction of MnSb phase fraction is weakened.
[1] Hu B, Yan L A, Shao M 2009 Adv. Mater. 21 1500
[2] Luo X H, Chen L 2008 Sci. China E: Technol. Sci. 51 1370
[3] Tang R L, Li Y, Tao Q, Li N N, Li H, Han D D, Zhu P W, Wan X 2013 Chin. Phys. B 22 066202
[4] Ma Y W, Xiao L Y, Yan L G 2006 Chin. Sci. Bull. 51 2944
[5] Tokunaga M 2012 Front. Phys. China 7 386
[6] Wang C J, Yuan Y, Wang Q, Liu T, Lou C S, He J C 2010 Acta Phys. Sin. 59 3116 (in Chinese) [王春江, 苑轶, 王强, 刘铁, 娄长胜, 赫冀成 2010 59 3116]
[7] Liu Z L, Hu H Y, Fan T Y, Xing X S 2009 Chin. Phys. B 18 1283
[8] Oreper G M, Szekely J 1984 J. Cryst. Growth 67 405
[9] Sampath R, Zabaras N 2001 J. Comput. Phys. 168 384
[10] Samanta D, Zabaras N 2006 Int. J. Heat Mass Tran. 49 4850
[11] Chedzey H A, Hurle D T J 1966 Nature 210 933
[12] Luo D W, Guo J, Yan Z M, Li T J 2009 Rare Metal Mat. Eng. 38 553 (in Chinese) [罗大伟, 郭进, 阎志明, 李廷举 2009 稀有金属材料与工程 38 553]
[13] Kang J Y, Tozawa S 1996 Acta Phys. Sin. 45 324 (in Chinese) [康俊勇, 户泽慎一郎 1996 45 324]
[14] Yuan Y, Sassa K, Iwai K, Wang Q, He J C, Asai S 2009 ISIJ Int. 48 901
[15] Koyama T 2008 Sci. Technol. Adv. Mater. 9 013006
[16] Mikelson A E, Karklin Y K 1981 J. Cryst. Growth 52 524
[17] Li X, Ren X M, Yves F 2007 Intermetallics 15 845
[18] Wang Q, Liu T, Wang C J, Wang K, Li G J, He J C 2010 Mater. Sci. Forum. 638-642 2805
[19] Sadovskiy V D, Rodigin N M, Smirnov L V, Filonchik G M, Fakidov I G 1961 Fiz. Met. Metalloved. 12 131
[20] Choi J K, Ohtsuka H, Xu Y, Choo W Y 2000 Scripta Mater. 43 221
[21] Ludtka G M, Jaramillo R A, Kisner R A, Nicholson D M, Wilgen J B, Mackiewicz-Ludtka G, Kalu P N 2004 Scripta Mater. 51 171
[22] Zhang Y D, He C S, Zhao X, Zuo L, Esling C, He J C 2005 J. Magn. Magn. Mater. 294 267
[23] Pang X J, Wang Q, Wang C J, Wang Y Q, Li Y B, He J C 2006 Acta Phys. Sin. 55 5129 (in Chinese) [庞雪君, 王强, 王春江, 王亚勤, 李亚彬, 赫冀成 2006 55 5129]
[24] Wang Q, Liu T, Zhang C, Gao A, Li D G, He J C 2009 Sci. Technol. Adv. Mater. 10 014606
-
[1] Hu B, Yan L A, Shao M 2009 Adv. Mater. 21 1500
[2] Luo X H, Chen L 2008 Sci. China E: Technol. Sci. 51 1370
[3] Tang R L, Li Y, Tao Q, Li N N, Li H, Han D D, Zhu P W, Wan X 2013 Chin. Phys. B 22 066202
[4] Ma Y W, Xiao L Y, Yan L G 2006 Chin. Sci. Bull. 51 2944
[5] Tokunaga M 2012 Front. Phys. China 7 386
[6] Wang C J, Yuan Y, Wang Q, Liu T, Lou C S, He J C 2010 Acta Phys. Sin. 59 3116 (in Chinese) [王春江, 苑轶, 王强, 刘铁, 娄长胜, 赫冀成 2010 59 3116]
[7] Liu Z L, Hu H Y, Fan T Y, Xing X S 2009 Chin. Phys. B 18 1283
[8] Oreper G M, Szekely J 1984 J. Cryst. Growth 67 405
[9] Sampath R, Zabaras N 2001 J. Comput. Phys. 168 384
[10] Samanta D, Zabaras N 2006 Int. J. Heat Mass Tran. 49 4850
[11] Chedzey H A, Hurle D T J 1966 Nature 210 933
[12] Luo D W, Guo J, Yan Z M, Li T J 2009 Rare Metal Mat. Eng. 38 553 (in Chinese) [罗大伟, 郭进, 阎志明, 李廷举 2009 稀有金属材料与工程 38 553]
[13] Kang J Y, Tozawa S 1996 Acta Phys. Sin. 45 324 (in Chinese) [康俊勇, 户泽慎一郎 1996 45 324]
[14] Yuan Y, Sassa K, Iwai K, Wang Q, He J C, Asai S 2009 ISIJ Int. 48 901
[15] Koyama T 2008 Sci. Technol. Adv. Mater. 9 013006
[16] Mikelson A E, Karklin Y K 1981 J. Cryst. Growth 52 524
[17] Li X, Ren X M, Yves F 2007 Intermetallics 15 845
[18] Wang Q, Liu T, Wang C J, Wang K, Li G J, He J C 2010 Mater. Sci. Forum. 638-642 2805
[19] Sadovskiy V D, Rodigin N M, Smirnov L V, Filonchik G M, Fakidov I G 1961 Fiz. Met. Metalloved. 12 131
[20] Choi J K, Ohtsuka H, Xu Y, Choo W Y 2000 Scripta Mater. 43 221
[21] Ludtka G M, Jaramillo R A, Kisner R A, Nicholson D M, Wilgen J B, Mackiewicz-Ludtka G, Kalu P N 2004 Scripta Mater. 51 171
[22] Zhang Y D, He C S, Zhao X, Zuo L, Esling C, He J C 2005 J. Magn. Magn. Mater. 294 267
[23] Pang X J, Wang Q, Wang C J, Wang Y Q, Li Y B, He J C 2006 Acta Phys. Sin. 55 5129 (in Chinese) [庞雪君, 王强, 王春江, 王亚勤, 李亚彬, 赫冀成 2006 55 5129]
[24] Wang Q, Liu T, Zhang C, Gao A, Li D G, He J C 2009 Sci. Technol. Adv. Mater. 10 014606
Catalog
Metrics
- Abstract views: 6124
- PDF Downloads: 710
- Cited By: 0