Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual-channel quantitative phase microscopy based on a single cube beamsplitter interferometer

Sun Teng-Fei Lu Peng Zhuo Zhuang Zhang Wen-Hao Lu Jing-Qi

Citation:

Dual-channel quantitative phase microscopy based on a single cube beamsplitter interferometer

Sun Teng-Fei, Lu Peng, Zhuo Zhuang, Zhang Wen-Hao, Lu Jing-Qi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Quantitative phase microscopy, as a non-destructive and non-invasive measurement technique, can indirectly reflect three-dimensional (3D) morphology and optical properties of transparent microstructure object by measuring phase information. In recent years, this kind of technique has been widely used to detect and investigate the characteristics of biological cells and it has become more and more important in the field of modern biomedical and life science. In this paper, only by using a single cube beamsplitter interferometer, a simple single-shot dual-channel quantitative phase microscopic measurement technique is demonstrated for 3D quantitative phase imaging of biological cells. In the proposed method, a conventional non-polarized cube beamsplitter is the most pivotal element. Unlike its traditional application method, the cube beamsplitter is tilted in a nonconventional configuration and the illumination beam is only incident on the left (or right) half of the cube beamsplitter (just the one side of central semi-reflecting layer), and a very small angle is introduced between the central semi-reflecting layer and the optical axis of incident beam. Based on the light splitting characteristic of the cube beamsplitter, two replicas of incident beam are generated. These two generated replicas (transmission beam and reflection beam) are of symmetry with respect to each other, and they will encounter and form interference when the direction of the incident beam meets a certain condition. Adjust the sample to a suitable position and make it only contact one half of incident beam, and the modulated beam will be seen as the object beam and the remaining clean half of incident beam as the reference beam. When the interference phenomenon occurs, two interference channels with a relative π (rad) phase-shift in one interferogram are acquired simultaneously only using one digital camera, and the higher spatial frequency of interference fringes can be achieved by adjusting a relatively big angle between the central semi-reflecting layer and the optical axis of incident beam. Because of the off-axis interference mode, we only need to record one interferogram to gain the continuous phase information and avoid using complex phase-shift techniques. At the same time, this proposed method is of simple structure and easy to operate due to using less ordinary off-the-shelf optical elements. All these simplify the structure of the system and reduce the cost of the system as much as possible. Finally, the phase information of paramecium is successfully obtained from different interference channels respectively. Furthermore, according to the characteristic of π (rad) phase-shift, we also realize the calibration and determination of ultimate precise phase information of sample by using the method of averaging between these two channels. The experimental results show that our proposed method is suitable for 3D surface morphology measurement of small transparent samples.
      Corresponding author: Lu Jing-Qi, Lu618@sdu.edu.cn
    • Funds: Project supported by the Shandong Provincial Natural Science Foundation for Distinguished Young Scholars, China (Grant No. 2013JQE27056) and the Shandong Provincial Key Research and Development Program, China (Grant No. 2016GSF121023).
    [1]

    Li J C, Lou Y L, Gui J B, Peng Z J, Song Q H 2013 Acta Phys. Sin. 62 124203 (in Chinese) [李俊昌, 楼宇丽, 桂进斌, 彭祖杰, 宋庆和 2013 62 124203]

    [2]

    Wang H Y, Zhang Z H, Liao W, Song X F, Guo Z J, Liu F F 2012 Acta Phys. Sin. 61 044208 (in Chinese) [王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞 2012 61 044208]

    [3]

    Marquet P, Depeursinge C, Magistretti P J 2014 Neurophotonics 1 020901

    [4]

    Marquet P, Rothenfusser K, Rappaz B, Depeursinge C, Jourdain P, Magistretti P J 2016 Proc. SPIE 9718 97180K

    [5]

    Wang H Y, Liu F F, Liao W, Song X F, Yu M J, Liu Z Q 2013 Acta Phys. Sin. 62 054208 (in Chinese) [王华英, 刘飞飞, 廖薇, 宋修法, 于梦杰, 刘佐强 2013 62 054208]

    [6]

    Li J C 2012 Acta Phys. Sin. 61 134203 (in Chinese) [李俊昌 2012 61 134203]

    [7]

    Mir M, Tangella K, Popescu G 2011 Biomed. Opt. Express 2 3259

    [8]

    Shaked N T 2012 Opt. Lett. 37 2016

    [9]

    Anand A, Faridian A, Chhaniwal V, Mahajan S, Trivedi V, Dubey S K, Pedrini G, Osten W, Javidi B 2014 Appl. Phys. Lett. 104 103705

    [10]

    Mahajan S, Trivedi V, Vora P, Chhaniwal V, Javidi B, Anand A 2015 Opt. Lett. 40 3743

    [11]

    Coquoz S, Nahas A, Sison M, Lopez A, Lasser T 2016 J. Biomed. Opt. 21 126019

    [12]

    Di J L, Li Y, Xie M, Zhang J W, Ma C J, Xi T L, Li E P, Zhao J L 2016 Appl. Opt. 55 7287

    [13]

    Ma C J, Li Y, Zhang J W, Li P, Xi T L, Di J L, Zhao J L 2017 Opt. Express 25 13659

    [14]

    Zhang J W, Dai S Q, Ma C J, Di J L, Zhao J L 2017 Appl. Opt. 56 3223

    [15]

    Chhaniwal V, Singh A S G, Leitgeb R A, Javidi B, Anand A 2012 Opt. Lett. 37 5127

    [16]

    Yuan F, Yuan C J, Nie S P, Zhu Z Q, Ma Q Y, Li Y, Zhu W Y, Feng S T 2014 Acta Phys. Sin. 63 104207 (in Chinese) [袁飞, 袁操今, 聂守平, 朱竹青, 马青玉, 李莹, 朱文艳, 冯少彤 2014 63 104207]

    [17]

    Singh A S G, Anand A, Leitgeb R A, Javidi B 2012 Opt. Express 20 23617

    [18]

    Lue N, Kang J W, Hillman T R, Dasari R R, Yaqoob Z 2012 Appl. Phys. Lett. 101 084101

    [19]

    Qu W J, Bhattacharya K, Choo C O, Yu Y J, Asundi A 2009 Appl. Opt. 48 2778

    [20]

    Gabai H, Shaked N T 2012 Opt. Express 20 26906

    [21]

    Lan B, Feng G Y, Zhang T, Liang J C, Zhou S H 2017 Acta Phys. Sin. 66 069501 (in Chinese) [兰斌, 冯国英, 张涛, 梁井川, 周寿桓 2017 66 069501]

    [22]

    Takeda M, Ina H, Kobayashi S 1982 J. Opt. Soc. Am. 72 156

    [23]

    Cuche E, Marquet P, Depeursinge C 2000 Appl. Opt. 39 4070

  • [1]

    Li J C, Lou Y L, Gui J B, Peng Z J, Song Q H 2013 Acta Phys. Sin. 62 124203 (in Chinese) [李俊昌, 楼宇丽, 桂进斌, 彭祖杰, 宋庆和 2013 62 124203]

    [2]

    Wang H Y, Zhang Z H, Liao W, Song X F, Guo Z J, Liu F F 2012 Acta Phys. Sin. 61 044208 (in Chinese) [王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞 2012 61 044208]

    [3]

    Marquet P, Depeursinge C, Magistretti P J 2014 Neurophotonics 1 020901

    [4]

    Marquet P, Rothenfusser K, Rappaz B, Depeursinge C, Jourdain P, Magistretti P J 2016 Proc. SPIE 9718 97180K

    [5]

    Wang H Y, Liu F F, Liao W, Song X F, Yu M J, Liu Z Q 2013 Acta Phys. Sin. 62 054208 (in Chinese) [王华英, 刘飞飞, 廖薇, 宋修法, 于梦杰, 刘佐强 2013 62 054208]

    [6]

    Li J C 2012 Acta Phys. Sin. 61 134203 (in Chinese) [李俊昌 2012 61 134203]

    [7]

    Mir M, Tangella K, Popescu G 2011 Biomed. Opt. Express 2 3259

    [8]

    Shaked N T 2012 Opt. Lett. 37 2016

    [9]

    Anand A, Faridian A, Chhaniwal V, Mahajan S, Trivedi V, Dubey S K, Pedrini G, Osten W, Javidi B 2014 Appl. Phys. Lett. 104 103705

    [10]

    Mahajan S, Trivedi V, Vora P, Chhaniwal V, Javidi B, Anand A 2015 Opt. Lett. 40 3743

    [11]

    Coquoz S, Nahas A, Sison M, Lopez A, Lasser T 2016 J. Biomed. Opt. 21 126019

    [12]

    Di J L, Li Y, Xie M, Zhang J W, Ma C J, Xi T L, Li E P, Zhao J L 2016 Appl. Opt. 55 7287

    [13]

    Ma C J, Li Y, Zhang J W, Li P, Xi T L, Di J L, Zhao J L 2017 Opt. Express 25 13659

    [14]

    Zhang J W, Dai S Q, Ma C J, Di J L, Zhao J L 2017 Appl. Opt. 56 3223

    [15]

    Chhaniwal V, Singh A S G, Leitgeb R A, Javidi B, Anand A 2012 Opt. Lett. 37 5127

    [16]

    Yuan F, Yuan C J, Nie S P, Zhu Z Q, Ma Q Y, Li Y, Zhu W Y, Feng S T 2014 Acta Phys. Sin. 63 104207 (in Chinese) [袁飞, 袁操今, 聂守平, 朱竹青, 马青玉, 李莹, 朱文艳, 冯少彤 2014 63 104207]

    [17]

    Singh A S G, Anand A, Leitgeb R A, Javidi B 2012 Opt. Express 20 23617

    [18]

    Lue N, Kang J W, Hillman T R, Dasari R R, Yaqoob Z 2012 Appl. Phys. Lett. 101 084101

    [19]

    Qu W J, Bhattacharya K, Choo C O, Yu Y J, Asundi A 2009 Appl. Opt. 48 2778

    [20]

    Gabai H, Shaked N T 2012 Opt. Express 20 26906

    [21]

    Lan B, Feng G Y, Zhang T, Liang J C, Zhou S H 2017 Acta Phys. Sin. 66 069501 (in Chinese) [兰斌, 冯国英, 张涛, 梁井川, 周寿桓 2017 66 069501]

    [22]

    Takeda M, Ina H, Kobayashi S 1982 J. Opt. Soc. Am. 72 156

    [23]

    Cuche E, Marquet P, Depeursinge C 2000 Appl. Opt. 39 4070

  • [1] Wang Zi-Shuo, Liu Lei, Liu Chen-Bo, Liu Ke, Zhong Zhi, Shan Ming-Guang. Fast phase unwrapping using digital differentiation-integration method. Acta Physica Sinica, 2023, 72(18): 184201. doi: 10.7498/aps.72.20230473
    [2] Sun Si-Tong, Ding Ying-Xing, Liu Wu-Ming. Research progress in quantum precision measurements based on linear and nonlinear interferometers. Acta Physica Sinica, 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [3] Shan Ming-Guang, Liu Xiang-Yu, Pang Cheng, Zhong Zhi, Yu Lei, Liu Bin, Liu Lei. Off-axis digital holographic decarrier phase recovery algorithm combined with linear regression. Acta Physica Sinica, 2022, 71(4): 044202. doi: 10.7498/aps.71.20211509
    [4] Gao Zhao-Lin, Liu Rui-Hua, Wen Kai, Ma Ying, Li Jian-Lang, Gao Peng. Phase/fluorescence dual-mode microscopy imaging based on structured light illumination. Acta Physica Sinica, 2022, 71(24): 244203. doi: 10.7498/aps.71.20221518
    [5] Wu Di, Jiang Zi-Zhen, Yu Huan-Huan, Zhang Chen-Shuang, Zhang Jiao, Lin Dan-Ying, Yu Bin, Qu Jun-Le. Quantitative phase microscopy imaging based on fractional spiral phase plate. Acta Physica Sinica, 2021, 70(15): 158702. doi: 10.7498/aps.70.20201884
    [6] Precise phase retrieval with carrier removal from single off-axis hologram by linear regression. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211509
    [7] Zhou Jing, Zhang Xiao-Fang, Zhao Yan-Geng. Phase retrieval wavefront sensing based on image fusion and convolutional neural network. Acta Physica Sinica, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [8] Li Yuan-Jie, He Xiao-Liang, Kong Yan, Wang Shou-Yu, Liu Cheng, Zhu Jian-Qiang. Shearing interferometric electron beam imaging based on ptychographic iterative engine method. Acta Physica Sinica, 2017, 66(13): 134202. doi: 10.7498/aps.66.134202
    [9] He Jiang-Tao, He Wen-Qi, Liao Mei-Hua, Lu Da-Jiang, Peng Xiang. Identity authentication based on two-beam interference and nonlinear correlation. Acta Physica Sinica, 2017, 66(4): 044202. doi: 10.7498/aps.66.044202
    [10] He Yin-Zhu, Zhao Shi-Jie, Wei Hao-Yun, Li Yan. Traceable trans-scale heterodyne interferometer with subnanometer resolution. Acta Physica Sinica, 2017, 66(6): 060601. doi: 10.7498/aps.66.060601
    [11] Qi Jun-Cheng, Chen Rong-Chang, Liu Bin, Chen Ping, Du Guo-Hao, Xiao Ti-Qiao. Grating based X-ray phase contrast CT imaging with iterative reconstruction algorithm. Acta Physica Sinica, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [12] Xu Xin-Ke, Liu Guo-Dong, Liu Bing-Guo, Chen Feng-Dong, Zhuang Zhi-Tao, Gan Yu. High-resolution laser frequency scanning interferometer based on fiber dispersion phase compensation. Acta Physica Sinica, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [13] He Wen-Qi, Peng Xiang, Meng Xiang-Feng, Liu Xiao-Li. Multi-level authentication based on two-beam interference. Acta Physica Sinica, 2013, 62(6): 064205. doi: 10.7498/aps.62.064205
    [14] Liu Cheng, Pan Xing-Chen, Zhu Jian-Qiang. Coherent diffractive imaging based on the multiple beam illumination with cross grating. Acta Physica Sinica, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [15] Liu Hong-Zhan, Ji Yue-Feng. An ameliorated fast phase retrieval iterative algorithm based on the angular spectrum theory. Acta Physica Sinica, 2013, 62(11): 114203. doi: 10.7498/aps.62.114203
    [16] Yang Zhen-Ya, Zheng Chu-Jun. Phase retrieval of pure phase object based on compressed sensing. Acta Physica Sinica, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203
    [17] Liu Hui-Qiang, Ren Yu-Qi, Zhou Guang-Zhao, He You, Xue Yan-Ling, Xiao Ti-Qiao. Investigation on the application of phase-attenuation duality to X-ray mixed contrast quantitative micro-tomography. Acta Physica Sinica, 2012, 61(7): 078701. doi: 10.7498/aps.61.078701
    [18] Cai Yuan-Xue, Zhang Yun-Dong, Dang Bo-Shi, Wu Hao, Wang Jin-Fang, Yuan Ping. High sensitivity slow light interferometer based on dispersiveproperty of Ⅲ-Ⅴ and Ⅱ-Ⅵ semiconductor materials. Acta Physica Sinica, 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [19] Huang Yan-Ping, Qi Chun-Yuan. Measurement of refractive index profile of holey fiber using quantitative phase tomography. Acta Physica Sinica, 2006, 55(12): 6395-6398. doi: 10.7498/aps.55.6395
    [20] Yu Bin, Peng Xiang, Tian Jin-Dong, Niu Han-Ben. Phase retrieval for hard x-ray in-line phase contrast imaging. Acta Physica Sinica, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
Metrics
  • Abstract views:  5779
  • PDF Downloads:  111
  • Cited By: 0
Publishing process
  • Received Date:  22 December 2017
  • Accepted Date:  09 April 2018
  • Published Online:  20 July 2019

/

返回文章
返回
Baidu
map