-
In order to realize the traceable trans-scale displacement measurements with high resolutions in the fields of fundamental scientific research and ultra-precision machining, we demonstrate a trans-scale heterodyne interferometer with a sub-nanometer resolution, through assembling a compact iodine-stabilized laser at 532 nm. Using modulation transfer spectroscopy, the green laser is traced back to the transition line R(56)32-O(a10), which is one of the recommended spectral lines for meter redefinition. The Allan standard deviation of the laser frequency is 1.310-12 within an average time of 1 s. Compared with most He-Ne lasers, the green laser has a short wavelength and good stability, which leads to a higher resolution. We use two acoustic-optic modulators driven by a two-channel acoustic-optic driver sharing the same crystal oscillator to separate input beams spatially. The frequency of one beam is shifted by 80 MHz and the other is shifted by 82 MHz, which results in a beat frequency of 2 MHz. As a result, the nonlinearity caused by source mixing substantially is reduced. The phase noises of the fibers and two acoustic-optic modulators are well compensated. In order to minimize the difficulty in adjusting the optical path and the error of the measurement, we integrate the interferometry components and design a monolithic prism. The optical resolution of the interferometer reaches to /4. The experiment is carried out in a vacuum environment to reduce the influence of the refractive index of air. High-precision phase measurement technology is used to improve the accuracy of the interferometer. The errors of the interferometer can be classified as random and systematic errors. Random errors include the error from the frequency instability of the laser and the error due to environmental effects. Systematic errors include the phase measurement error and the nonlinearity error. To verify the performance of the interferometer, these errors must be evaluated. In a span of 100 mm, the measurement uncertainties caused by laser wavelength uncertainty, the air refractive index uncertainty, the phase measurement uncertainty and the nonlinearity error are 3 pm, 300 pm, 6.3 pm and 118 pm, respectively. Finally, the performance evaluation shows that the combined uncertainty of the interferometer reaches 322 pm in a span of 100 mm, which is mainly due to the refractive index of air. The heterodyne interferometer meets the requirements for traceable trans-scale measurement with a sub-nanometer resolution, which can be widely used in instrument calibration, length standard making, and geometric measurement.
-
Keywords:
- trans-scale /
- traceable /
- measurement /
- interferometer
[1] Mcclelland J J, Scholten R E, Palm E C, Celotta R J 1993 Science 262 877
[2] Li T B 2005 Shanghai Measurement and Testing 32 8 (in Chinese) [李同保 2005 上海计量测试 32 8]
[3] Zhang P P, Ma Y, Zhang B W, Li T B 2011 Acta Opt. Sin. 31 190 (in Chinese) [张萍萍, 马艳, 张宝武, 李同保 2011 光学学报 31 190]
[4] Bustillo J M, Howe R T, Muller R S 1998 Proc. IEEE 86 1552
[5] Zhang X J, Meng Y G, Wen S Z 2004 Acta Phys. Sin. 53 728 (in Chinese) [张向军, 孟永刚, 温诗铸 2004 53 728]
[6] Zhu M H, Wu X J, Wei H Y, Zhang L Q, Zhang J T, Li Y 2013 Acta Phys. Sin. 62 070702 (in Chinese) [朱敏昊, 吴学健, 尉昊赟, 张丽琼, 张继涛, 李岩 2013 62 070702]
[7] Zuo A B, Li W B, Peng Y X, Cao J P, Zang E J 2005 Chin. J. Lasers 32 164 (in Chinese) [左爱斌, 李文博, 彭月祥, 曹建平, 臧二军 2005 中国激光 32 164]
[8] Cordiale P, Galzerano G, Schnatz H 2000 Metrologia 37 177
[9] Bi Z Y, Luo M, Ding J X, Ma L S 2000 Acta Opt. Sin. 20 1699 (in Chinese) [毕志毅, 罗明, 丁晶新, 马龙生 2000 光学学报 20 1699]
[10] Galzerano G, Svelto C, Bertinetto F, Bava E 1999 Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference, 1999, IMTC/99 3 1913
[11] Lin B K, Cao S Y, Zhao Y, Li Y, Wang Q, Lin Y G, Cao J P, Zang E J, Fang Z J, Li T C 2014 Chin. J. Lasers 41 8 (in Chinese) [林百科, 曹士英, 赵阳, 李烨, 王强, 林弋戈, 曹建平, 臧二军, 方占军, 李天初 2014 中国激光 41 8]
[12] Zang E J, Cao J P, Zhong M C, Li C Y, Shen N C, Hong D M, Cui L R, Zhu Z, Liu A H 2002 Appl. Opt. 41 7012
[13] Badami V G, Patterson S R 2000 Precis. Eng. 24 41
[14] Quenelle R C 1983 Hewlett Packard 34 10
[15] Hou W, Wilkening G 1992 Precis. Eng. 14 91
[16] Cosijins S J A G, Haitjema H, Schellekens P H J 2002 Precis. Eng. 26 448
[17] Zang E J, Cao J P, Li Y, Deng Y K, Yang T, Li C Y, Li W B 2007 Chin. J. Lasers 34 203 (in Chinese) [臧二军, 曹建平, 李烨, 邓勇开, 杨涛, 李成阳, 李文博 2007 中国激光 34 203]
[18] Born M, Wolf E 1992 Principles of Optics (7th Ed.) (Cambridge: Press of University of Cambridge) p92
[19] Schwarz D, Wormeester H, Poelsema B 2011 Thin Solid Films 519 2994
[20] Wu C M, Lawall J, Deslattes R D 1999 Appl. Opt. 38 4089
[21] Ellis J D, Meskers A J, Spronck J W, Munning R H 2011 Opt. Lett. 36 3584
[22] Hu P C, Chen P, Ding X M, Tan J B 2014 Appl. Opt. 53 5448
[23] Pdooer P, Zaman Khan T, Haque Khan M, Muktadir Rahman M 2014 Int. J. Computer Appl. 96 1
-
[1] Mcclelland J J, Scholten R E, Palm E C, Celotta R J 1993 Science 262 877
[2] Li T B 2005 Shanghai Measurement and Testing 32 8 (in Chinese) [李同保 2005 上海计量测试 32 8]
[3] Zhang P P, Ma Y, Zhang B W, Li T B 2011 Acta Opt. Sin. 31 190 (in Chinese) [张萍萍, 马艳, 张宝武, 李同保 2011 光学学报 31 190]
[4] Bustillo J M, Howe R T, Muller R S 1998 Proc. IEEE 86 1552
[5] Zhang X J, Meng Y G, Wen S Z 2004 Acta Phys. Sin. 53 728 (in Chinese) [张向军, 孟永刚, 温诗铸 2004 53 728]
[6] Zhu M H, Wu X J, Wei H Y, Zhang L Q, Zhang J T, Li Y 2013 Acta Phys. Sin. 62 070702 (in Chinese) [朱敏昊, 吴学健, 尉昊赟, 张丽琼, 张继涛, 李岩 2013 62 070702]
[7] Zuo A B, Li W B, Peng Y X, Cao J P, Zang E J 2005 Chin. J. Lasers 32 164 (in Chinese) [左爱斌, 李文博, 彭月祥, 曹建平, 臧二军 2005 中国激光 32 164]
[8] Cordiale P, Galzerano G, Schnatz H 2000 Metrologia 37 177
[9] Bi Z Y, Luo M, Ding J X, Ma L S 2000 Acta Opt. Sin. 20 1699 (in Chinese) [毕志毅, 罗明, 丁晶新, 马龙生 2000 光学学报 20 1699]
[10] Galzerano G, Svelto C, Bertinetto F, Bava E 1999 Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference, 1999, IMTC/99 3 1913
[11] Lin B K, Cao S Y, Zhao Y, Li Y, Wang Q, Lin Y G, Cao J P, Zang E J, Fang Z J, Li T C 2014 Chin. J. Lasers 41 8 (in Chinese) [林百科, 曹士英, 赵阳, 李烨, 王强, 林弋戈, 曹建平, 臧二军, 方占军, 李天初 2014 中国激光 41 8]
[12] Zang E J, Cao J P, Zhong M C, Li C Y, Shen N C, Hong D M, Cui L R, Zhu Z, Liu A H 2002 Appl. Opt. 41 7012
[13] Badami V G, Patterson S R 2000 Precis. Eng. 24 41
[14] Quenelle R C 1983 Hewlett Packard 34 10
[15] Hou W, Wilkening G 1992 Precis. Eng. 14 91
[16] Cosijins S J A G, Haitjema H, Schellekens P H J 2002 Precis. Eng. 26 448
[17] Zang E J, Cao J P, Li Y, Deng Y K, Yang T, Li C Y, Li W B 2007 Chin. J. Lasers 34 203 (in Chinese) [臧二军, 曹建平, 李烨, 邓勇开, 杨涛, 李成阳, 李文博 2007 中国激光 34 203]
[18] Born M, Wolf E 1992 Principles of Optics (7th Ed.) (Cambridge: Press of University of Cambridge) p92
[19] Schwarz D, Wormeester H, Poelsema B 2011 Thin Solid Films 519 2994
[20] Wu C M, Lawall J, Deslattes R D 1999 Appl. Opt. 38 4089
[21] Ellis J D, Meskers A J, Spronck J W, Munning R H 2011 Opt. Lett. 36 3584
[22] Hu P C, Chen P, Ding X M, Tan J B 2014 Appl. Opt. 53 5448
[23] Pdooer P, Zaman Khan T, Haque Khan M, Muktadir Rahman M 2014 Int. J. Computer Appl. 96 1
Catalog
Metrics
- Abstract views: 6758
- PDF Downloads: 288
- Cited By: 0