Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of annealing temperature on properties of Cu2O thin films deposited by electron beam evaporation

Li Hai-Tao Jiang Ya-Xiao Tu Li-Min Li Shao-Hua Pan Ling Li Wen-Biao Yang Shi-E Chen Yong-Sheng

Citation:

Influence of annealing temperature on properties of Cu2O thin films deposited by electron beam evaporation

Li Hai-Tao, Jiang Ya-Xiao, Tu Li-Min, Li Shao-Hua, Pan Ling, Li Wen-Biao, Yang Shi-E, Chen Yong-Sheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Inorganic-organic metal halide perovskite solar cells (PSCs) have drawn tremendous attention as a promising next-generation solar-cell technology because of their high efficiencies and low production cost. Since the first report in 2009, the recorded power conversion efficiency (PCE) of PSCs has rapidly risen to 22.1% by using 2, 2', 7, 7'-tetrakis (N,Ndi-p-methoxyphenyl-amine) 9,9-spirobifluorene (spiro-MeoTAD) as hole transport material (HTM), with the efforts devoted to the device architecture optimization, material compositional engineer and interface engineering. Nevertheless, the synthesis and cost of the organic HTM (OHTM) become a major challenging issue and therefore alternative materials are required. In the past few years, the applications of inorganic HTMs (IHTMs) in PSCs have shown large improvement in PCE and stability. For example, PSCs with CuOx as IHTM reached a PCE of 19.0% with better stability. Even more exciting, the theoretical PCE of PSC based on Cu2O HTM reaches 24.4%. So, Cu2O is a promising IHTM for future optimized PSC and the large area uniform preparation is very important. In this paper, Cu2O films have been successfully prepared using electron beam evaporation followed by air annealing. The influences of annealing temperature and time on the composition, structure, and photoelectric characteristics of film are investigated in detail. It is found that the as-deposited film is a mixture of Cu2O and Cu. With the increase of annealing temperature, material composition is transformed from mixture to pure Cu2O phase, and then to CuO, due to the oxidation in air. In an annealing temperature between 100℃ to 150℃, pure Cu2O film can be obtained with an average transmission rate over 70%, optical band-gap of 2.5 eV, HOMO level of -5.32 eV, and a carrier mobility of 30 cm2·V-1·s-1. When the film is treated with a UV lamp, the structure and composition of the film can be changed more easily because of the enhancement of oxidation. Finally, reverted planar PSCs with the structure of Ag/PCBM/CH3NH3PbI3/HTMs/ITO are constructed and compared carefully based on HTMs of Cu2O, with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS), and Cu2O/PEDOT:PSS layers, respectively. An optimum thickness of 40 nm of Cu2O HTM is achieved with high carrier extraction rate. However, the performances of all of the PSCs are inferior to those of PEDOT:PSS-based devices, due to the formation of pinholesin absorber layer resulting from the strong hydrophobicity of Cu2O film. However, the efficiency of PSC based on Cu2O/PEDOT:PSS double-HTM is deteriorated because of the chemical interaction between PEDOT:PSS and Cu2O. These findings provide some important guidelines for the design of HTMs.
      Corresponding author: Chen Yong-Sheng, chysh2003@zzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61574129) and the Basic and Frontier Project of Henan Province in China (Grant No. 152300410035).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S 2017 Science 356 1376

    [3]

    Li M H, Yum J H, Moon S J, Chen P 2016 Energies 9 331

    [4]

    Cai Q, Li H, Jiang Y, Tu L, Ma L, Wu X, Yang S, Shi Z, Zang J, Chen Y 2018 Sol. Energy 159 786

    [5]

    Bakr Z H, Wali Q, Fakharuddin A, Schmidt-Mende L, Browne T M, Jose R 2017 Nano Energy 34 271

    [6]

    You J B, Meng L, Song T B, et al. 2016 Nat. Nanotechnol. 11 75

    [7]

    Brinkmann K O, Zhao J, Pourdavoud N, Becker T, Hu T, Olthof S, Meerholz K, Hoffmann L, Gahlmann T, Heiderhoff R, Oszajca M F, Luechinger N A, Rogalla D, Chen Y, Cheng B, Riedl T 2017 Nat. Commun. 8 13938

    [8]

    Li B S, Akimoto K, Shen A 2009 J. Cryst. Growth 311 1102

    [9]

    Xu Y, Jiao X, Chen D 2008 J. Phys. Chem. C 112 16769

    [10]

    Malerba C, Biccari F, Ricardo C L A, D’Incau M, Scardi P, Mittiga A 2011 Sol. Energy Mater. Sol. Cells 95 2848

    [11]

    Guo Y, Lei H, Xiong L, Li B, Chen Z, Wen J, Yang G, Li G, Fang G 2017 J. Mater. Chem. A 5 11055

    [12]

    Hossain M I, Alharbi F H, Tabet N 2015 Sol. Energy 120 370

    [13]

    Nejand B A, Ahmadi V, Gharibzadeh S, Shahverdi H R 2016 Chemsuschem 9 302

    [14]

    Yu W, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L, Hedhili M N, Li Y, Wu K, Wang X, Mohammed O F, Wu T 2016 Nanoscale 8 6173

    [15]

    Zuo C, Ding L 2015 Small 11 5528

    [16]

    Sun W, Li Y, Ye S, Rao H, Yan W, Peng H, Li Y, Liu Z, Wang S, Chen Z, Xiao L, Bian Z, Huang C 2016 Nanoscale 8 10806

    [17]

    Rao H, Ye S, Sun W, Yan W, Li Y, Peng H, Liu Z, Bian Z, Li Y, Huang C 2016 Nano Energy 27 51

    [18]

    Moghtaderi B 2010 Energy Fuels 24 190

    [19]

    Gan J, Venkatachalapathy V, Svensson B G, Monakhov E V 2015 Thin Solid Films 594 250

    [20]

    Shang Y, Shao Y M, Zhang D F, Guo L 2014 Angew. Chem. Int. Ed. 53 11514

    [21]

    Liu A, Liu G, Zhu C, Zhu H, Fortunato E, Martins R, Shan F 2016 Adv. Electron. Mater. 2 1600140

    [22]

    Zhang H, Zhang D, Guo L, Zhang R, Yin P, Wang R 2008 J. Nanosci. Nanotechnol. 8 6332

    [23]

    Li C, Li Y, Delaunay J J 2014 ACS Appl. Mater. Interfaces 6 480

    [24]

    Reydellet J, Balkanski M, Trivich D 1972 Phys. Stat. Sol. 52 175

    [25]

    Balamurugan B, Mehta B R, Avasthi D K, Singh F, Arora A K, Rajalakshmi M, Raghavan G, Tyagi A K, Shivaprasad S M 2002 J. Appl. Phys. 92 3304

    [26]

    Martin L, Martinez H, Poinot D, Pecquenard B, Cras F L 2013 J. Phys. Chem. C 117 4421

    [27]

    Niveditha C V, Fatima M J J, Sindhu S 2016 J. Electrochem. Soc. 163 H426

    [28]

    Nikesha V V, Mandaleb A B, Patilb K R, Mahamuni S 2005 Mater. Res. Bull. 40 694

    [29]

    Visalakshi S, Kannan R, Valanarasu S, Kim H S, Kathalingam A, Chandramohan R 2015 Appl. Phys. A 120 1105

    [30]

    Hu F, Chan K C, Yue T M, Surya C 2014 Thin Solid Films 550 17

    [31]

    Khan M A, Mahmood H, Ahmed R N, Khan A A, Mahboobullah, Iqbal T, Ishaque A, Mofeed R 2016 J. Nano Res. 40 1

    [32]

    Hsu C C, Wu C H, Wang S Y 2016 J. Alloys Compd. 663 262

    [33]

    Dolai S, Das S, Hussain S, Bhar R, Pal A K 2017 Vacuum 141 296

    [34]

    Nejand B A, Ahmadi V, Shahverdi H R 2015 ACS Appl. Mater. Interfaces 7 21807

  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S 2017 Science 356 1376

    [3]

    Li M H, Yum J H, Moon S J, Chen P 2016 Energies 9 331

    [4]

    Cai Q, Li H, Jiang Y, Tu L, Ma L, Wu X, Yang S, Shi Z, Zang J, Chen Y 2018 Sol. Energy 159 786

    [5]

    Bakr Z H, Wali Q, Fakharuddin A, Schmidt-Mende L, Browne T M, Jose R 2017 Nano Energy 34 271

    [6]

    You J B, Meng L, Song T B, et al. 2016 Nat. Nanotechnol. 11 75

    [7]

    Brinkmann K O, Zhao J, Pourdavoud N, Becker T, Hu T, Olthof S, Meerholz K, Hoffmann L, Gahlmann T, Heiderhoff R, Oszajca M F, Luechinger N A, Rogalla D, Chen Y, Cheng B, Riedl T 2017 Nat. Commun. 8 13938

    [8]

    Li B S, Akimoto K, Shen A 2009 J. Cryst. Growth 311 1102

    [9]

    Xu Y, Jiao X, Chen D 2008 J. Phys. Chem. C 112 16769

    [10]

    Malerba C, Biccari F, Ricardo C L A, D’Incau M, Scardi P, Mittiga A 2011 Sol. Energy Mater. Sol. Cells 95 2848

    [11]

    Guo Y, Lei H, Xiong L, Li B, Chen Z, Wen J, Yang G, Li G, Fang G 2017 J. Mater. Chem. A 5 11055

    [12]

    Hossain M I, Alharbi F H, Tabet N 2015 Sol. Energy 120 370

    [13]

    Nejand B A, Ahmadi V, Gharibzadeh S, Shahverdi H R 2016 Chemsuschem 9 302

    [14]

    Yu W, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L, Hedhili M N, Li Y, Wu K, Wang X, Mohammed O F, Wu T 2016 Nanoscale 8 6173

    [15]

    Zuo C, Ding L 2015 Small 11 5528

    [16]

    Sun W, Li Y, Ye S, Rao H, Yan W, Peng H, Li Y, Liu Z, Wang S, Chen Z, Xiao L, Bian Z, Huang C 2016 Nanoscale 8 10806

    [17]

    Rao H, Ye S, Sun W, Yan W, Li Y, Peng H, Liu Z, Bian Z, Li Y, Huang C 2016 Nano Energy 27 51

    [18]

    Moghtaderi B 2010 Energy Fuels 24 190

    [19]

    Gan J, Venkatachalapathy V, Svensson B G, Monakhov E V 2015 Thin Solid Films 594 250

    [20]

    Shang Y, Shao Y M, Zhang D F, Guo L 2014 Angew. Chem. Int. Ed. 53 11514

    [21]

    Liu A, Liu G, Zhu C, Zhu H, Fortunato E, Martins R, Shan F 2016 Adv. Electron. Mater. 2 1600140

    [22]

    Zhang H, Zhang D, Guo L, Zhang R, Yin P, Wang R 2008 J. Nanosci. Nanotechnol. 8 6332

    [23]

    Li C, Li Y, Delaunay J J 2014 ACS Appl. Mater. Interfaces 6 480

    [24]

    Reydellet J, Balkanski M, Trivich D 1972 Phys. Stat. Sol. 52 175

    [25]

    Balamurugan B, Mehta B R, Avasthi D K, Singh F, Arora A K, Rajalakshmi M, Raghavan G, Tyagi A K, Shivaprasad S M 2002 J. Appl. Phys. 92 3304

    [26]

    Martin L, Martinez H, Poinot D, Pecquenard B, Cras F L 2013 J. Phys. Chem. C 117 4421

    [27]

    Niveditha C V, Fatima M J J, Sindhu S 2016 J. Electrochem. Soc. 163 H426

    [28]

    Nikesha V V, Mandaleb A B, Patilb K R, Mahamuni S 2005 Mater. Res. Bull. 40 694

    [29]

    Visalakshi S, Kannan R, Valanarasu S, Kim H S, Kathalingam A, Chandramohan R 2015 Appl. Phys. A 120 1105

    [30]

    Hu F, Chan K C, Yue T M, Surya C 2014 Thin Solid Films 550 17

    [31]

    Khan M A, Mahmood H, Ahmed R N, Khan A A, Mahboobullah, Iqbal T, Ishaque A, Mofeed R 2016 J. Nano Res. 40 1

    [32]

    Hsu C C, Wu C H, Wang S Y 2016 J. Alloys Compd. 663 262

    [33]

    Dolai S, Das S, Hussain S, Bhar R, Pal A K 2017 Vacuum 141 296

    [34]

    Nejand B A, Ahmadi V, Shahverdi H R 2015 ACS Appl. Mater. Interfaces 7 21807

  • [1] Qu Zi-Han, Zhao Yang, Ma Fei, You Jing-Bi. Preparation of high-performance large-area perovskite solar cells by atomic layer deposition of metal oxide buffer layer. Acta Physica Sinica, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [2] Zhang Xi-Sheng, Yan Chun-Yu, Hu Li-Na, Wang Jing-Zhou, Yao Chen-Zhong. Perovskite solar cells prepared by processing CsPbBr3 nanocrystalline films in low temperature solution. Acta Physica Sinica, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [3] Han Xiao-Jing, Yang Jing, Zhang Jia-Li, Liu Dong-Xue, Shi Biao, Wang Peng-Yang, Zhao Ying, Zhang Xiao-Dan. Electron transport layer of tin dioxide deposited by reactive plasma and its application in perovskite solar cells. Acta Physica Sinica, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [4] Han Mei-Dou-Xue,  Wang Ya,  Wang Rong-Bo,  Zhao Jun-Tao,  Ren Hui-Zhi,  Hou Guo-Fu,  Zhao Ying,  Zhang Xiao-Dan,  Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [5] Han Mei-Dou-Xue, Wang Ya, Wang Rong-Bo, Zhao Jun-Tao, Ren Hui-Zhi, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan, Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [6] Li Yan, He Hong, Dang Wei-Wu, Chen Xue-Lian, Sun Can, Zheng Jia-Lu. Research progress of light irradiation stability of functional layers in perovskite solar cells. Acta Physica Sinica, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [7] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Structure optimization and optoelectronical property calculation for organic lead iodine perovskite solar cells. Acta Physica Sinica, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [8] Xu Ting, Wang Zi-Shuai, Li Xuan-Hua, Sha Wei E. I.. Loss mechanism analyses of perovskite solar cells with equivalent circuit model. Acta Physica Sinica, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [9] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Simulation and property calculation for FA1–xCsx PbI3–y Bry: Structures and optoelectronical properties. Acta Physica Sinica, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [10] Liang Xiao-Juan, Cao Yu, Cai Hong-Kun, Su Jian, Ni Jian, Li Juan, Zhang Jian-Jun. Simulation and architectural design for Schottky structure perovskite solar cells. Acta Physica Sinica, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [11] Chen Yong-Liang, Tang Ya-Wen, Chen Pei-Run, Zhang Li, Liu Qi, Zhao Ying, Huang Qian, Zhang Xiao-Dan. Progress in perovskite solar cells based on different buffer layer materials. Acta Physica Sinica, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [12] Wu Bu-Jun, Lin Dong-Xu, Li Zheng, Cheng Zhen-Ping, Li Xin, Chen Ke, Shi Ting-Ting, Xie Wei-Guang, Liu Peng-Yi. Optimization of grain size to achieve high-performance perovskite solar cells in vapor deposition. Acta Physica Sinica, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [13] Li Shao-Hua, Li Hai-Tao, Jiang Ya-Xiao, Tu Li-Min, Li Wen-Biao, Pan Ling, Yang Shi-E, Chen Yong-Sheng. Quality management of high-efficiency planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [14] Wang Jun-Xia, Bi Zhuo-Neng, Liang Zhu-Rong, Xu Xue-Qing. Progress of new carbon material research in perovskite solar cells. Acta Physica Sinica, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [15] Wang Fu-Zhi, Tan Zhan-Ao, Dai Song-Yuan, Li Yong-Fang. Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [16] Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao. Progress of research on new hole transporting materials used in perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [17] Liu Hua-Song, Ji Yi-Qin, Jiang Yu-Gang, Wang Li-Shuan, Leng Jian, Sun Peng, Zhuang Ke-Wen. Study on internal short-range order microstructure characteristic of SiO2 thin film. Acta Physica Sinica, 2013, 62(18): 187801. doi: 10.7498/aps.62.187801
    [18] Luo Yin-Yan, Zhu Xian-Fang. Effects of thermal evaporation and electron beam evaporation on two-dimensional patterned Ag nanostructure during nanosphere lithography. Acta Physica Sinica, 2011, 60(8): 086104. doi: 10.7498/aps.60.086104
    [19] Hou Hai-Hong, Sun Xi-Lian, Shen Yan-Ming, Shao Jian-Da, Fan Zheng-Xiu, Yi Kui. Roughness and light scattering properties of ZrO2 thin films deposited by electron beam evaporation. Acta Physica Sinica, 2006, 55(6): 3124-3127. doi: 10.7498/aps.55.3124
    [20] Yan Zhi-Jun, Wang Yin-Yue, Xu Run, Jiang Zui-Min. Structural characteristics of HfO2 films grown by e-beam evaporation. Acta Physica Sinica, 2004, 53(8): 2771-2774. doi: 10.7498/aps.53.2771
Metrics
  • Abstract views:  6512
  • PDF Downloads:  289
  • Cited By: 0
Publishing process
  • Received Date:  16 November 2017
  • Accepted Date:  13 December 2017
  • Published Online:  05 March 2018

/

返回文章
返回
Baidu
map