-
Inorganic-organic metal halide perovskite solar cells (PSCs) have drawn tremendous attention as a promising next-generation solar-cell technology because of their high efficiencies and low production cost. Since the first report in 2009, the recorded power conversion efficiency (PCE) of PSCs has rapidly risen to 22.1% by using 2, 2', 7, 7'-tetrakis (N,Ndi-p-methoxyphenyl-amine) 9,9-spirobifluorene (spiro-MeoTAD) as hole transport material (HTM), with the efforts devoted to the device architecture optimization, material compositional engineer and interface engineering. Nevertheless, the synthesis and cost of the organic HTM (OHTM) become a major challenging issue and therefore alternative materials are required. In the past few years, the applications of inorganic HTMs (IHTMs) in PSCs have shown large improvement in PCE and stability. For example, PSCs with CuOx as IHTM reached a PCE of 19.0% with better stability. Even more exciting, the theoretical PCE of PSC based on Cu2O HTM reaches 24.4%. So, Cu2O is a promising IHTM for future optimized PSC and the large area uniform preparation is very important. In this paper, Cu2O films have been successfully prepared using electron beam evaporation followed by air annealing. The influences of annealing temperature and time on the composition, structure, and photoelectric characteristics of film are investigated in detail. It is found that the as-deposited film is a mixture of Cu2O and Cu. With the increase of annealing temperature, material composition is transformed from mixture to pure Cu2O phase, and then to CuO, due to the oxidation in air. In an annealing temperature between 100℃ to 150℃, pure Cu2O film can be obtained with an average transmission rate over 70%, optical band-gap of 2.5 eV, HOMO level of -5.32 eV, and a carrier mobility of 30 cm2·V-1·s-1. When the film is treated with a UV lamp, the structure and composition of the film can be changed more easily because of the enhancement of oxidation. Finally, reverted planar PSCs with the structure of Ag/PCBM/CH3NH3PbI3/HTMs/ITO are constructed and compared carefully based on HTMs of Cu2O, with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS), and Cu2O/PEDOT:PSS layers, respectively. An optimum thickness of 40 nm of Cu2O HTM is achieved with high carrier extraction rate. However, the performances of all of the PSCs are inferior to those of PEDOT:PSS-based devices, due to the formation of pinholesin absorber layer resulting from the strong hydrophobicity of Cu2O film. However, the efficiency of PSC based on Cu2O/PEDOT:PSS double-HTM is deteriorated because of the chemical interaction between PEDOT:PSS and Cu2O. These findings provide some important guidelines for the design of HTMs.
-
Keywords:
- Cu2O film /
- electron beam evaporation /
- perovskite solar cells /
- hole transporting materials
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[2] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S 2017 Science 356 1376
[3] Li M H, Yum J H, Moon S J, Chen P 2016 Energies 9 331
[4] Cai Q, Li H, Jiang Y, Tu L, Ma L, Wu X, Yang S, Shi Z, Zang J, Chen Y 2018 Sol. Energy 159 786
[5] Bakr Z H, Wali Q, Fakharuddin A, Schmidt-Mende L, Browne T M, Jose R 2017 Nano Energy 34 271
[6] You J B, Meng L, Song T B, et al. 2016 Nat. Nanotechnol. 11 75
[7] Brinkmann K O, Zhao J, Pourdavoud N, Becker T, Hu T, Olthof S, Meerholz K, Hoffmann L, Gahlmann T, Heiderhoff R, Oszajca M F, Luechinger N A, Rogalla D, Chen Y, Cheng B, Riedl T 2017 Nat. Commun. 8 13938
[8] Li B S, Akimoto K, Shen A 2009 J. Cryst. Growth 311 1102
[9] Xu Y, Jiao X, Chen D 2008 J. Phys. Chem. C 112 16769
[10] Malerba C, Biccari F, Ricardo C L A, D’Incau M, Scardi P, Mittiga A 2011 Sol. Energy Mater. Sol. Cells 95 2848
[11] Guo Y, Lei H, Xiong L, Li B, Chen Z, Wen J, Yang G, Li G, Fang G 2017 J. Mater. Chem. A 5 11055
[12] Hossain M I, Alharbi F H, Tabet N 2015 Sol. Energy 120 370
[13] Nejand B A, Ahmadi V, Gharibzadeh S, Shahverdi H R 2016 Chemsuschem 9 302
[14] Yu W, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L, Hedhili M N, Li Y, Wu K, Wang X, Mohammed O F, Wu T 2016 Nanoscale 8 6173
[15] Zuo C, Ding L 2015 Small 11 5528
[16] Sun W, Li Y, Ye S, Rao H, Yan W, Peng H, Li Y, Liu Z, Wang S, Chen Z, Xiao L, Bian Z, Huang C 2016 Nanoscale 8 10806
[17] Rao H, Ye S, Sun W, Yan W, Li Y, Peng H, Liu Z, Bian Z, Li Y, Huang C 2016 Nano Energy 27 51
[18] Moghtaderi B 2010 Energy Fuels 24 190
[19] Gan J, Venkatachalapathy V, Svensson B G, Monakhov E V 2015 Thin Solid Films 594 250
[20] Shang Y, Shao Y M, Zhang D F, Guo L 2014 Angew. Chem. Int. Ed. 53 11514
[21] Liu A, Liu G, Zhu C, Zhu H, Fortunato E, Martins R, Shan F 2016 Adv. Electron. Mater. 2 1600140
[22] Zhang H, Zhang D, Guo L, Zhang R, Yin P, Wang R 2008 J. Nanosci. Nanotechnol. 8 6332
[23] Li C, Li Y, Delaunay J J 2014 ACS Appl. Mater. Interfaces 6 480
[24] Reydellet J, Balkanski M, Trivich D 1972 Phys. Stat. Sol. 52 175
[25] Balamurugan B, Mehta B R, Avasthi D K, Singh F, Arora A K, Rajalakshmi M, Raghavan G, Tyagi A K, Shivaprasad S M 2002 J. Appl. Phys. 92 3304
[26] Martin L, Martinez H, Poinot D, Pecquenard B, Cras F L 2013 J. Phys. Chem. C 117 4421
[27] Niveditha C V, Fatima M J J, Sindhu S 2016 J. Electrochem. Soc. 163 H426
[28] Nikesha V V, Mandaleb A B, Patilb K R, Mahamuni S 2005 Mater. Res. Bull. 40 694
[29] Visalakshi S, Kannan R, Valanarasu S, Kim H S, Kathalingam A, Chandramohan R 2015 Appl. Phys. A 120 1105
[30] Hu F, Chan K C, Yue T M, Surya C 2014 Thin Solid Films 550 17
[31] Khan M A, Mahmood H, Ahmed R N, Khan A A, Mahboobullah, Iqbal T, Ishaque A, Mofeed R 2016 J. Nano Res. 40 1
[32] Hsu C C, Wu C H, Wang S Y 2016 J. Alloys Compd. 663 262
[33] Dolai S, Das S, Hussain S, Bhar R, Pal A K 2017 Vacuum 141 296
[34] Nejand B A, Ahmadi V, Shahverdi H R 2015 ACS Appl. Mater. Interfaces 7 21807
-
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[2] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S 2017 Science 356 1376
[3] Li M H, Yum J H, Moon S J, Chen P 2016 Energies 9 331
[4] Cai Q, Li H, Jiang Y, Tu L, Ma L, Wu X, Yang S, Shi Z, Zang J, Chen Y 2018 Sol. Energy 159 786
[5] Bakr Z H, Wali Q, Fakharuddin A, Schmidt-Mende L, Browne T M, Jose R 2017 Nano Energy 34 271
[6] You J B, Meng L, Song T B, et al. 2016 Nat. Nanotechnol. 11 75
[7] Brinkmann K O, Zhao J, Pourdavoud N, Becker T, Hu T, Olthof S, Meerholz K, Hoffmann L, Gahlmann T, Heiderhoff R, Oszajca M F, Luechinger N A, Rogalla D, Chen Y, Cheng B, Riedl T 2017 Nat. Commun. 8 13938
[8] Li B S, Akimoto K, Shen A 2009 J. Cryst. Growth 311 1102
[9] Xu Y, Jiao X, Chen D 2008 J. Phys. Chem. C 112 16769
[10] Malerba C, Biccari F, Ricardo C L A, D’Incau M, Scardi P, Mittiga A 2011 Sol. Energy Mater. Sol. Cells 95 2848
[11] Guo Y, Lei H, Xiong L, Li B, Chen Z, Wen J, Yang G, Li G, Fang G 2017 J. Mater. Chem. A 5 11055
[12] Hossain M I, Alharbi F H, Tabet N 2015 Sol. Energy 120 370
[13] Nejand B A, Ahmadi V, Gharibzadeh S, Shahverdi H R 2016 Chemsuschem 9 302
[14] Yu W, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L, Hedhili M N, Li Y, Wu K, Wang X, Mohammed O F, Wu T 2016 Nanoscale 8 6173
[15] Zuo C, Ding L 2015 Small 11 5528
[16] Sun W, Li Y, Ye S, Rao H, Yan W, Peng H, Li Y, Liu Z, Wang S, Chen Z, Xiao L, Bian Z, Huang C 2016 Nanoscale 8 10806
[17] Rao H, Ye S, Sun W, Yan W, Li Y, Peng H, Liu Z, Bian Z, Li Y, Huang C 2016 Nano Energy 27 51
[18] Moghtaderi B 2010 Energy Fuels 24 190
[19] Gan J, Venkatachalapathy V, Svensson B G, Monakhov E V 2015 Thin Solid Films 594 250
[20] Shang Y, Shao Y M, Zhang D F, Guo L 2014 Angew. Chem. Int. Ed. 53 11514
[21] Liu A, Liu G, Zhu C, Zhu H, Fortunato E, Martins R, Shan F 2016 Adv. Electron. Mater. 2 1600140
[22] Zhang H, Zhang D, Guo L, Zhang R, Yin P, Wang R 2008 J. Nanosci. Nanotechnol. 8 6332
[23] Li C, Li Y, Delaunay J J 2014 ACS Appl. Mater. Interfaces 6 480
[24] Reydellet J, Balkanski M, Trivich D 1972 Phys. Stat. Sol. 52 175
[25] Balamurugan B, Mehta B R, Avasthi D K, Singh F, Arora A K, Rajalakshmi M, Raghavan G, Tyagi A K, Shivaprasad S M 2002 J. Appl. Phys. 92 3304
[26] Martin L, Martinez H, Poinot D, Pecquenard B, Cras F L 2013 J. Phys. Chem. C 117 4421
[27] Niveditha C V, Fatima M J J, Sindhu S 2016 J. Electrochem. Soc. 163 H426
[28] Nikesha V V, Mandaleb A B, Patilb K R, Mahamuni S 2005 Mater. Res. Bull. 40 694
[29] Visalakshi S, Kannan R, Valanarasu S, Kim H S, Kathalingam A, Chandramohan R 2015 Appl. Phys. A 120 1105
[30] Hu F, Chan K C, Yue T M, Surya C 2014 Thin Solid Films 550 17
[31] Khan M A, Mahmood H, Ahmed R N, Khan A A, Mahboobullah, Iqbal T, Ishaque A, Mofeed R 2016 J. Nano Res. 40 1
[32] Hsu C C, Wu C H, Wang S Y 2016 J. Alloys Compd. 663 262
[33] Dolai S, Das S, Hussain S, Bhar R, Pal A K 2017 Vacuum 141 296
[34] Nejand B A, Ahmadi V, Shahverdi H R 2015 ACS Appl. Mater. Interfaces 7 21807
Catalog
Metrics
- Abstract views: 6512
- PDF Downloads: 289
- Cited By: 0