-
Considering a moving two-level atom interacting with a single-mode thermal field through multi-photon process, in this paper we study the entropy exchange between the atom and the field by using quantum partial entropy and entanglement measured by using Concurrence, and investigate the effects of the initial atomic state, the atomic motion, the mean photon number and the transition photon number on entropy and entanglement. The results show that the entropy exchange and the entanglement exhibit the periodic evolution due to atomic motion, and entropy exchange occurs. The entanglement between the atom and the field is strengthened as the transition photon number increases. When the partial entropy exchange between atom and field is zero, the entanglement is also zero.
-
Keywords:
- multi-photon J-C model /
- moving atom /
- mixed states /
- partial entropy
[1] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information, (Cambridge: Cambridge University Press)
[2] Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275
[3] Bose S, Fuentes-Guridi I, Knight P L, Vedral V 2001 Phys. Rev. Lett. 87 050401
[4] Zhang C J, Han Y J, Zhang Y S, Wu Y C, Zhou X F, Guo G C 2010 Phys. Rev. A 82 062312
[5] Yu C, Yi X X, Song H 2008 Phys. Rev. A 78 062330
[6] Jaynes E T, Cummings E W 1963 Proc. IEEE 51 89
[7] Prants S V, Uleysky M Yu, Argonov V Yu 2006 Phys. Rev. A 73 023807
[8] Zhang Y, Chen G, Yu L, Liang Q, Liang J Q, Jia S 2011 Phys. Rev. A 83 065802
[9] Zhang Y J, Xia Y J, Ren T Q, Du X M, Liu Y L 2009 Acta Phys. Sin. 58 722 (in Chinese) [张英杰, 夏云杰, 任廷琦, 杜秀梅, 刘玉玲 2009 58 722]
[10] Liu W Y, Bi S W, Dou S B 2010 Acta Phys. Sin. 59 1780 (in Chinese) [刘王云, 毕思文, 豆西博 2010 59 1780]
[11] Fang M F 1994 Acta Phys. Sin. 43 1776 (in Chinese) [方卯发 1994 43 1776]
[12] Phoenix S J D, Knight P L 1988 Ann. Phys. (NY) 186 381
[13] Boukobza E, Tannor D J 2005 Phys. Rev. A 71 063821
[14] Zhang J, Shao B, Zou J 2008 Commun. Theor. Phys. 49 1463
[15] Zhang Y Q, Tan L, Zhu Z H, Xiong Z Z, Liu L W 2010 Chin. Phys. B 19 024210
[16] Hüunkar K 2011 Commun. Theor. Phys. 56 139
[17] Guo J L, Sun Y B, Li Z D 2011 Optics Communications 284 896
[18] Schlicher R R 1989 Opt. Commum. 70 97
[19] Tan L, Zhang Y Q, Zhu Z H 2011 Chin. Phys. B 20 070303
[20] Rendell R W, Rajagopal A K 2003 Phys. Rev. A 67 062110
[21] Abdel-Aty M, Furuichi S, Obada A-S F 2002 J. Opt. B 4 37
-
[1] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information, (Cambridge: Cambridge University Press)
[2] Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275
[3] Bose S, Fuentes-Guridi I, Knight P L, Vedral V 2001 Phys. Rev. Lett. 87 050401
[4] Zhang C J, Han Y J, Zhang Y S, Wu Y C, Zhou X F, Guo G C 2010 Phys. Rev. A 82 062312
[5] Yu C, Yi X X, Song H 2008 Phys. Rev. A 78 062330
[6] Jaynes E T, Cummings E W 1963 Proc. IEEE 51 89
[7] Prants S V, Uleysky M Yu, Argonov V Yu 2006 Phys. Rev. A 73 023807
[8] Zhang Y, Chen G, Yu L, Liang Q, Liang J Q, Jia S 2011 Phys. Rev. A 83 065802
[9] Zhang Y J, Xia Y J, Ren T Q, Du X M, Liu Y L 2009 Acta Phys. Sin. 58 722 (in Chinese) [张英杰, 夏云杰, 任廷琦, 杜秀梅, 刘玉玲 2009 58 722]
[10] Liu W Y, Bi S W, Dou S B 2010 Acta Phys. Sin. 59 1780 (in Chinese) [刘王云, 毕思文, 豆西博 2010 59 1780]
[11] Fang M F 1994 Acta Phys. Sin. 43 1776 (in Chinese) [方卯发 1994 43 1776]
[12] Phoenix S J D, Knight P L 1988 Ann. Phys. (NY) 186 381
[13] Boukobza E, Tannor D J 2005 Phys. Rev. A 71 063821
[14] Zhang J, Shao B, Zou J 2008 Commun. Theor. Phys. 49 1463
[15] Zhang Y Q, Tan L, Zhu Z H, Xiong Z Z, Liu L W 2010 Chin. Phys. B 19 024210
[16] Hüunkar K 2011 Commun. Theor. Phys. 56 139
[17] Guo J L, Sun Y B, Li Z D 2011 Optics Communications 284 896
[18] Schlicher R R 1989 Opt. Commum. 70 97
[19] Tan L, Zhang Y Q, Zhu Z H 2011 Chin. Phys. B 20 070303
[20] Rendell R W, Rajagopal A K 2003 Phys. Rev. A 67 062110
[21] Abdel-Aty M, Furuichi S, Obada A-S F 2002 J. Opt. B 4 37
计量
- 文章访问数: 7297
- PDF下载量: 509
- 被引次数: 0