Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theory of atomic vector magnetometer using linearly polarized resonant light

Zhang Jun-Hai Wang Ping-Wen Han Yu Kang Chong Sun Wei-Min

Citation:

Theory of atomic vector magnetometer using linearly polarized resonant light

Zhang Jun-Hai, Wang Ping-Wen, Han Yu, Kang Chong, Sun Wei-Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As is well known a linearly polarized resonant laser will cause atoms to generate a magnetic tensor moment (MTM) by polarizing them. When there exists an external magnetic field, it is possible that the moment will precess around the field. In the presence of a radio frequency (RF) exciting source, we investigate theoretically the dependence of time-independent (direct current, DC), the first and second harmonic signal of the MTM precession on magnetic vector field, and obtain its analytical solution by solving the Liouville equation. The results show that the interference of both harmonic components will result in the precession spectrum evidently varying. A detailed explanation is described in the following. For the DC signal, Rabi frequency Ω of 1/(2√2) is a spectral splitting threshold. When it is greater than the threshold, the interference will cause single resonant absorption dip characterized usually to split into two dips, which has not been reported before to the best of our knowledge, and the separation between both the dips may be expressed as √3√Ω2+Ω4 -Ω2-1. For the first harmonic signal including symmetric and antisymmetric component, an interference fringe will appear near the center of antisymmetric part when Ω >1/(2√2), simultaneously its symmetric part behaves like the above dc component, such as splitting threshold and separation between both dips. With regard to the second harmonic signal, it is found that the interference can also lead to the width of the second harmonic decreasing to 38% compared with the case of the first harmonic signal. At the optimum RF Rabi frequency, on the assumption that noise spectral density is constant, it is theoretically shown that the most sensitive magnetometer, realized by the DC component or the first or second harmonic signal of the precession, depends only on the angle between the light polarization and the measured magnetic field.In fact, we are able to obtain the modules of the measured magnetic vector by RF resonant frequency. The angle between the magnetic field and the laser polarization is determined just by the ratio of the intensity of the DC component to the intensity of the second harmonic signal and the ratio between the intensities of the symmetric parts of two harmonic signals in resonance, and another orientation angle between the measured field projection at the plane perpendicular to the light polarization and the direction of RF source depends on the phase difference between the antisymmetric components of both harmonic signals. Consequently, we demonstrate a vectorial atomic magnetometer that is realized by using the RF source and the linearly polarized resonant laser without rotating laser polarization. This kind of atomic magnetometer with simple sensor structure is easy to integrate vector magnetometer array which will be suitable for solving the inverse problem and geomagnetic navigation.
      Corresponding author: Zhang Jun-Hai, jhzhang@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1631239, U1331114).
    [1]

    Budker D, Romalis M 2007 Nat. Phys. 3 227

    [2]

    Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110

    [3]

    Shah V, Knappe S, Schwindt P D D, Kitching J 2007 Nat. Photon. 1 649

    [4]

    Savukov I, Karaulanov T, Boshier M G 2014 Appl. Phys. Lett. 104 023504

    [5]

    Lee H J, Shim J H, Moon H S, Kim K 2014 Opt. Express 22 19887

    [6]

    Xia H, Baranga B A, Hoffman D, Romalis M V 2006 Appl. Phys. Lett. 89 211104

    [7]

    Zou S, Zhang H, Chen X Y, Chen Y, Lu J X, Hu Z H, Shan G C, Quan W, Fang J C 2016 J. Appl. Phys. 119 143901

    [8]

    Allmendinger F, Heil W, Karpuk S, Kilian W, Scharth A, Schmidt U, Schnabel A, Sobolev Y, Tullney K 2014 Phys. Rev. Lett. 112 110801

    [9]

    Goldenberg F 2006 IEEE/ION Position, Location and Navigation Symposium-PLANS San Diego, California of USA, April 25-27 2006 p684

    [10]

    Huang H C, Dong H F, Hu X Y, Chen L, Gao Y 2015 Appl. Phys. Lett. 107 182403

    [11]

    Patton B, Zhivun E, Hovde D C, Budker D 2014 Phys. Rev. Lett. 113 013001

    [12]

    Seltzer S J, Romalis M V 2004 Appl. Phys. Lett. 85 4804

    [13]

    Vershovskii A K 2011 Tech. Phys. Lett. 37 140

    [14]

    Sun W M, Huang Q, Huang Z J, Wang P W, Zhang J H 2017 Chin. Phys. Lett. 34 058501

    [15]

    Yudin V I, Taichenachev A V, Dudin Y O, Velichansky V L, Zibrov A S, Zibrov S A 2010 Phys. Rev. A 82 033807

    [16]

    Cox K, Yudin V I, Taichenachev A V, Novikova I, Mikhailov E E 2011 Phys. Rev. A 83 015801

    [17]

    Fu J Q, Du P C, Zhou Q, Wang R Q 2016 Chin. Phys. B 25 010302

    [18]

    Gu Y, Shi R Y, Wang Y H 2014 Acta Phys. Sin. 63 110701 (in Chinese) [顾源, 石荣晔, 王延辉 2014 63 110701]

    [19]

    Lin Z S, Peng X, Li W H, Wang H D, Guo H 2017 Opt. Express 25 7668

    [20]

    Bevilacqua G, Breschi E 2014 Phys. Rev. A 89 062507

    [21]

    Gawlik W, Krzenmień L, Pustelny S, Sangla D, Zachorowski J 2006 Appl. Phys. Lett. 88 131108

    [22]

    Weis A, Bison G, Pazgalev A S 2006 Phys. Rev. A 74 033401

    [23]

    Domenico G D, Bison G, Groeger S, Knowles P, Pazgalev A S, Rebetez M, Saudan H, Weis A 2006 Phys. Rev. A 74 063415

    [24]

    Breschi E, Weis A 2012 Phys. Rev. A 86 053427

    [25]

    Budker D, Kimball D F, DeMille D P 2012 Atomic Physics (2nd Ed.) (England: Oxford University Press) pp110-112

    [26]

    Li N, Huang K K, Lu X H 2013 Acta Phys. Sin. 62 133201 (in Chinese) [李楠, 黄凯凯, 陆璇辉 2013 62 133201]

    [27]

    Ding Z C, Yuang J, Luo H, Long X W 2017 Chin. Phys. B 26 093301

    [28]

    Grewal R S, Pattabiraman M 2016 Eur. Phys. J. D 70 219

    [29]

    Weis A, Shi Y Q, Grujić Z D 2017 Eur. Phys. J. D 71 80

    [30]

    Grosz A, Haji-Sheikh M J, Mukhopadhyay S C 2017 High Sensitivity Magnetometers (Switzerland: Springer) pp380-387

    [31]

    Ben-Kish A, Romalis M V 2010 Phys. Rev. Lett. 105 193601

    [32]

    Zhang F, Tian Y, Zhang Y, Gu S H 2016 Chin. Phys. B 25 094206

  • [1]

    Budker D, Romalis M 2007 Nat. Phys. 3 227

    [2]

    Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110

    [3]

    Shah V, Knappe S, Schwindt P D D, Kitching J 2007 Nat. Photon. 1 649

    [4]

    Savukov I, Karaulanov T, Boshier M G 2014 Appl. Phys. Lett. 104 023504

    [5]

    Lee H J, Shim J H, Moon H S, Kim K 2014 Opt. Express 22 19887

    [6]

    Xia H, Baranga B A, Hoffman D, Romalis M V 2006 Appl. Phys. Lett. 89 211104

    [7]

    Zou S, Zhang H, Chen X Y, Chen Y, Lu J X, Hu Z H, Shan G C, Quan W, Fang J C 2016 J. Appl. Phys. 119 143901

    [8]

    Allmendinger F, Heil W, Karpuk S, Kilian W, Scharth A, Schmidt U, Schnabel A, Sobolev Y, Tullney K 2014 Phys. Rev. Lett. 112 110801

    [9]

    Goldenberg F 2006 IEEE/ION Position, Location and Navigation Symposium-PLANS San Diego, California of USA, April 25-27 2006 p684

    [10]

    Huang H C, Dong H F, Hu X Y, Chen L, Gao Y 2015 Appl. Phys. Lett. 107 182403

    [11]

    Patton B, Zhivun E, Hovde D C, Budker D 2014 Phys. Rev. Lett. 113 013001

    [12]

    Seltzer S J, Romalis M V 2004 Appl. Phys. Lett. 85 4804

    [13]

    Vershovskii A K 2011 Tech. Phys. Lett. 37 140

    [14]

    Sun W M, Huang Q, Huang Z J, Wang P W, Zhang J H 2017 Chin. Phys. Lett. 34 058501

    [15]

    Yudin V I, Taichenachev A V, Dudin Y O, Velichansky V L, Zibrov A S, Zibrov S A 2010 Phys. Rev. A 82 033807

    [16]

    Cox K, Yudin V I, Taichenachev A V, Novikova I, Mikhailov E E 2011 Phys. Rev. A 83 015801

    [17]

    Fu J Q, Du P C, Zhou Q, Wang R Q 2016 Chin. Phys. B 25 010302

    [18]

    Gu Y, Shi R Y, Wang Y H 2014 Acta Phys. Sin. 63 110701 (in Chinese) [顾源, 石荣晔, 王延辉 2014 63 110701]

    [19]

    Lin Z S, Peng X, Li W H, Wang H D, Guo H 2017 Opt. Express 25 7668

    [20]

    Bevilacqua G, Breschi E 2014 Phys. Rev. A 89 062507

    [21]

    Gawlik W, Krzenmień L, Pustelny S, Sangla D, Zachorowski J 2006 Appl. Phys. Lett. 88 131108

    [22]

    Weis A, Bison G, Pazgalev A S 2006 Phys. Rev. A 74 033401

    [23]

    Domenico G D, Bison G, Groeger S, Knowles P, Pazgalev A S, Rebetez M, Saudan H, Weis A 2006 Phys. Rev. A 74 063415

    [24]

    Breschi E, Weis A 2012 Phys. Rev. A 86 053427

    [25]

    Budker D, Kimball D F, DeMille D P 2012 Atomic Physics (2nd Ed.) (England: Oxford University Press) pp110-112

    [26]

    Li N, Huang K K, Lu X H 2013 Acta Phys. Sin. 62 133201 (in Chinese) [李楠, 黄凯凯, 陆璇辉 2013 62 133201]

    [27]

    Ding Z C, Yuang J, Luo H, Long X W 2017 Chin. Phys. B 26 093301

    [28]

    Grewal R S, Pattabiraman M 2016 Eur. Phys. J. D 70 219

    [29]

    Weis A, Shi Y Q, Grujić Z D 2017 Eur. Phys. J. D 71 80

    [30]

    Grosz A, Haji-Sheikh M J, Mukhopadhyay S C 2017 High Sensitivity Magnetometers (Switzerland: Springer) pp380-387

    [31]

    Ben-Kish A, Romalis M V 2010 Phys. Rev. Lett. 105 193601

    [32]

    Zhang F, Tian Y, Zhang Y, Gu S H 2016 Chin. Phys. B 25 094206

  • [1] Miao Pei-Xian, Wang Tao, Shi Yan-Chao, Gao Cun-Xu, Cai Zhi-Wei, Chai Guo-Zhi, Chen Da-Yong, Wang Jian-Bo. Measurement of coercivity of soft magnetic materials in open magnetic circuit by pump-probe rubidium atomic magnetometer. Acta Physica Sinica, 2022, 71(24): 244206. doi: 10.7498/aps.71.20221618
    [2] Chen Da-Yong, Miao Pei-Xian, Shi Yan-Chao, Cui Jing-Zhong, Liu Zhi-Dong, Chen Jiang, Wang Kuan. Measurement of noise of current source by pump-probe atomic magnetometer. Acta Physica Sinica, 2022, 71(2): 024202. doi: 10.7498/aps.71.20211122
    [3] Measurement of the Noise of Current Source by Pump-probe Atomic Magnetometer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211122
    [4] Li Hui, Jiang Min, Zhu Zhen-Nan, Xu Wen-Jie, Xu Min-Xiang, Peng Xin-Hua. Calibration of magnetic field measurement capability of rubidium-xenon vapor cell atomic magnetometer. Acta Physica Sinica, 2019, 68(16): 160701. doi: 10.7498/aps.68.20190868
    [5] Miao Pei-Xian, Yang Shi-Yu, Wang Jian-Xiang, Lian Ji-Qing, Tu Jian-Hui, Yang Wei, Cui Jing-Zhong. Rubidium atomic magnetometer based on pump-probe nonlinear magneto-optical rotation. Acta Physica Sinica, 2017, 66(16): 160701. doi: 10.7498/aps.66.160701
    [6] Wang Ri-Xing, Ye Hua, Wang Li-Juan, Ao Zhang-Hong. Magnetization reversal and precession in spin valve structures with a perpendicular free layer and a tilted polarizer layer. Acta Physica Sinica, 2017, 66(12): 127201. doi: 10.7498/aps.66.127201
    [7] Wang Zhi-Guo, Luo Hui, Fan Zhen-Fang, Xie Yuan-Ping. Research on an pump-probe rubidium magnetometer. Acta Physica Sinica, 2016, 65(21): 210702. doi: 10.7498/aps.65.210702
    [8] Gu Yuan, Shi Rong-Ye, Wang Yan-Hui. study on sensitivity-related parameters of distributed feedback laser-pumped cesium atomic magnetometer. Acta Physica Sinica, 2014, 63(11): 110701. doi: 10.7498/aps.63.110701
    [9] Li Nan, Huang Kai-Kai, Lu Xuan-Hui. Study on the sensitivity of laser-pumped cesium atomic magnetometer. Acta Physica Sinica, 2013, 62(13): 133201. doi: 10.7498/aps.62.133201
    [10] Wang Dong. Optimized design of filter-fluorescer spectrometer. Acta Physica Sinica, 2010, 59(1): 443-446. doi: 10.7498/aps.59.443
    [11] Li Shu-Guang, Zhou Xiang, Cao Xiao-Chao, Sheng Ji-Teng, Xu Yun-Fei, Wang Zhao-Ying, Lin Qiang. All-optical high sensitive atomic magnetometer. Acta Physica Sinica, 2010, 59(2): 877-882. doi: 10.7498/aps.59.877
    [12] Wang Xiang-Qi, Feng De-Ren, Shang Lei, Pei Yuan-Ji, He Ning, Zhao Tao. Measurement and analysis of the pulsed magnetic field phase lag in the ceramic case. Acta Physica Sinica, 2004, 53(12): 4319-4324. doi: 10.7498/aps.53.4319
    [13] WANG YONG-JIU, TANG ZHI-MING. THE ORBITAL PRECESSION EFFECT IN THE MASS QUADRUPOLE MOMENT FIELD. Acta Physica Sinica, 2001, 50(12): 2284-2288. doi: 10.7498/aps.50.2284
    [14] PENG YI, LIANG ZHI-BIN, JING JI-LIANG, HUANG YI-BIN. THE EFFECT OF GYROSCOPIC PRECESSION IN SEN SPACETIME. Acta Physica Sinica, 2000, 49(9): 1670-1678. doi: 10.7498/aps.49.1670
    [15] ZHANG YUAN-ZHONG, GUO HAN-YING. ON THE VECTOR-TENSOR INTERACTION OF GRAVITATION. Acta Physica Sinica, 1982, 31(11): 1554-1557. doi: 10.7498/aps.31.1554
    [16] LU QI-HUNG, LIU YU-FEN, ZHOU ZHENG-LONG, GUO HAN-YING. THE SCALAR-TENSOR GRAVITATIONAL WAVES. Acta Physica Sinica, 1974, 23(2): 15-32. doi: 10.7498/aps.23.15
    [17] WO TSANG-SHENG, TAI KWANG-SI, LIU KONG-CHUN, TING YU. AN EXPERIMENTAL STUDY OF PROTON FREE PRECESSION IN A WEAK MAGNETIC FIELD AND ITS APPLICATION TO FIELD WORK. Acta Physica Sinica, 1965, 21(6): 1175-1187. doi: 10.7498/aps.21.1175
    [18] TZU HUNG-YUAN. ON THE MAGNETIC MOMENT OF NUCLEON. Acta Physica Sinica, 1956, 12(1): 85-86. doi: 10.7498/aps.12.85
    [19] Yü MIN. THE ANOMALOUS MAGNETIC MOMENT OF NUCLEONS. Acta Physica Sinica, 1955, 11(2): 133-142. doi: 10.7498/aps.11.133
    [20] TIEN QU. ON THE MAGNETIC MOMENT OF NEUTRON. Acta Physica Sinica, 1955, 11(5): 425-428. doi: 10.7498/aps.11.425
Metrics
  • Abstract views:  6532
  • PDF Downloads:  251
  • Cited By: 0
Publishing process
  • Received Date:  23 September 2017
  • Accepted Date:  19 December 2017
  • Published Online:  20 March 2019

/

返回文章
返回
Baidu
map