搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

六光子超纠缠态制备方案

丁东 何英秋 闫凤利 高亭

引用本文:
Citation:

六光子超纠缠态制备方案

丁东, 何英秋, 闫凤利, 高亭

Generation of six-photon hyperentangled states

Ding Dong, He Ying-Qiu, Yan Feng-Li, Gao Ting
PDF
导出引用
  • 自发参量下转换对应于一种非线性光学过程, 实验上作为一种标准方法, 人们利用自发参量下转换源产生纠缠光子对. 本文考虑由自发参量下转换源产生三对纠缠光子的情况. 通过使用由几组偏振光 束分束器、分束器和半波片等线性光学器件组成的量子线路演化三对光子, 给出了一个高效制备 包含偏振纠缠和空间纠缠的六光子超纠缠态方案. 因为方案中包含了参量下转换源产生三对纠缠光子 的所有可能情况, 所以本方案有很高的效率. 基于弱非线性介质构建了一个量子非破坏性测量装置, 用于区分光子在两指定的空间模中的两种分布情况. 特别地, 方案中可以通过合理约束在量子非破坏性测量过程中引入的非线性强度来达到实际实验所限定的数量级, 因此, 该方案易于在实验上实现.
    Nowadays, the nonlinear optical process of spontaneous parametric down-conversion is considered as the canonical approach for creating entangled-photon pairs. We consider three pairs of entangled photons emitted by the parametric down-conversion source, and introduce a setup for evolving these photons based on linear optics, which is composed of several polarizing beam splitters, beam splitters, and half wave plates. By using the parametric down-conversion source and the setup, we carefully design an efficient scheme for preparing six-photon hyperentangled states in both the polarization and the spatial degrees of freedom. Because we use almost all possible behaviors of the three pairs of entangled photons, the present scheme is efficient for creating six-photon hyperentangled states. Next, in the regime of weak nonlinearity we design a quantum nondemolition detection to distinguish the two cases of photons in two special spatial modes. It is worth pointing out that our scheme is much easier to realize, since the strength of the nonlinearities in the process of quantum nondemolition detection can be restricted to the scalable orders of magnitude in practicality.
    • 基金项目: 国家自然科学基金(批准号: 11475054, 11371005)、河北省自然科学基金(批准号: A2012205013, A2014205060)、中央高校基本科研业务费(批准号: 3142014068, 3142014125)和廊坊市科技支撑计划项目(批准号: 2014011002)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475054, 11371005), the Hebei Natural Science Foundation, China (Grant Nos. A2012205013, A2014205060), the Fundamental Research Funds for the Central Universities of Ministry of Education, China (Grant Nos. 3142014068, 3142014125), and the Langfang Key Technology Research and Development Program, China (Grant No. 2014011002).
    [1]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46

    [2]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zkowski M 2012 Rev. Mod. Phys. 84 777

    [3]

    Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V, Shih Y 1995 Phys. Rev. Lett. 75 4337

    [4]

    Bouwmeester D, Pan J W, Daniell M, Weinfurter H, Zeilinger A 1999 Phys. Rev. Lett. 82 1345

    [5]

    Pan J W, Daniell M, Gasparoni S, Weihs G, Zeilinger A 2001 Phys. Rev. Lett. 86 4435

    [6]

    Jin G S, Lin Y, Wu B 2007 Phys. Rev. A 75 054302

    [7]

    Wang H F, Zhang S 2009 Phys. Rev. A 79 042336

    [8]

    Kwiat P G 1997 J. Mod. Opt. 44 2173

    [9]

    Du K, Qiao C F 2012 J. Mod. Opt. 59 611

    [10]

    He Y Q, Ding D, Yan F L, Gao T 2015 J. Phys. B 48 055501

    [11]

    Simon C, Pan J W 2002 Phys. Rev. Lett. 89 257901

    [12]

    Sheng Y B, Deng F G 2010 Phys. Rev. A 82 044305

    [13]

    Ding D, Yan F L 2013 Phys. Lett. A 377 1088

    [14]

    Chiuri A, Greganti C, Paternostro M, Vallone G, Mataloni P 2012 Phys. Rev. Lett. 109 173604

    [15]

    Xu X F, Bao X H, Pan J W 2012 Phys. Rev. A 86 050304

    [16]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [17]

    Greenberger D M, Horne M A, Shimony A, Zeilinger A 1990 Am. J. Phys. 58 1131

    [18]

    Yan F L, Gao T, Chitambar E 2011 Phys. Rev. A 83 022319

    [19]

    Gao T, Yan F L, van Enk S J 2014 Phys. Rev. Lett. 112 180501

    [20]

    Bai Y K, Xu Y F, Wang Z D 2014 Phys. Rev. Lett. 113 100503

    [21]

    Boyd R W 1999 J. Mod. Opt. 46 367

    [22]

    Kok P, Lee H, Dowling J P 2002 Phys. Rev. A 66 063814

    [23]

    Munro W J, Nemoto K, Beausoleil R G, Spiller T P 2005 Phys. Rev. A 71 033819

    [24]

    Nemoto K, Munro W J 2004 Phys. Rev. Lett. 93 250502

    [25]

    Lin Q, He B, Bergou J A, Ren Y H 2009 Phys. Rev. A 80 042311

    [26]

    Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J, Spiller T P 2005 Phys. Rev. A 71 060302

    [27]

    Sheng Y B, Deng F G, Long G L 2010 Phys. Rev. A 82 032318

    [28]

    Ding D, Yan F L, Gao T 2014 Sci. China: Phys. Mech. Astron. 57 2098

    [29]

    Ding D, Yan F L, Gao T 2013 J. Opt. Soc. Am. B 30 3075

    [30]

    Ding D, Yan F L 2013 Acta Phys. Sin. 62 100304 (in Chinese) [丁东, 闫凤利 2013 62 100304]

    [31]

    Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P, Milburn G J 2007 Rev. Mod. Phys. 79 135

    [32]

    Kok P 2008 Phys. Rev. A 77 013808

  • [1]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46

    [2]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zkowski M 2012 Rev. Mod. Phys. 84 777

    [3]

    Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V, Shih Y 1995 Phys. Rev. Lett. 75 4337

    [4]

    Bouwmeester D, Pan J W, Daniell M, Weinfurter H, Zeilinger A 1999 Phys. Rev. Lett. 82 1345

    [5]

    Pan J W, Daniell M, Gasparoni S, Weihs G, Zeilinger A 2001 Phys. Rev. Lett. 86 4435

    [6]

    Jin G S, Lin Y, Wu B 2007 Phys. Rev. A 75 054302

    [7]

    Wang H F, Zhang S 2009 Phys. Rev. A 79 042336

    [8]

    Kwiat P G 1997 J. Mod. Opt. 44 2173

    [9]

    Du K, Qiao C F 2012 J. Mod. Opt. 59 611

    [10]

    He Y Q, Ding D, Yan F L, Gao T 2015 J. Phys. B 48 055501

    [11]

    Simon C, Pan J W 2002 Phys. Rev. Lett. 89 257901

    [12]

    Sheng Y B, Deng F G 2010 Phys. Rev. A 82 044305

    [13]

    Ding D, Yan F L 2013 Phys. Lett. A 377 1088

    [14]

    Chiuri A, Greganti C, Paternostro M, Vallone G, Mataloni P 2012 Phys. Rev. Lett. 109 173604

    [15]

    Xu X F, Bao X H, Pan J W 2012 Phys. Rev. A 86 050304

    [16]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [17]

    Greenberger D M, Horne M A, Shimony A, Zeilinger A 1990 Am. J. Phys. 58 1131

    [18]

    Yan F L, Gao T, Chitambar E 2011 Phys. Rev. A 83 022319

    [19]

    Gao T, Yan F L, van Enk S J 2014 Phys. Rev. Lett. 112 180501

    [20]

    Bai Y K, Xu Y F, Wang Z D 2014 Phys. Rev. Lett. 113 100503

    [21]

    Boyd R W 1999 J. Mod. Opt. 46 367

    [22]

    Kok P, Lee H, Dowling J P 2002 Phys. Rev. A 66 063814

    [23]

    Munro W J, Nemoto K, Beausoleil R G, Spiller T P 2005 Phys. Rev. A 71 033819

    [24]

    Nemoto K, Munro W J 2004 Phys. Rev. Lett. 93 250502

    [25]

    Lin Q, He B, Bergou J A, Ren Y H 2009 Phys. Rev. A 80 042311

    [26]

    Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J, Spiller T P 2005 Phys. Rev. A 71 060302

    [27]

    Sheng Y B, Deng F G, Long G L 2010 Phys. Rev. A 82 032318

    [28]

    Ding D, Yan F L, Gao T 2014 Sci. China: Phys. Mech. Astron. 57 2098

    [29]

    Ding D, Yan F L, Gao T 2013 J. Opt. Soc. Am. B 30 3075

    [30]

    Ding D, Yan F L 2013 Acta Phys. Sin. 62 100304 (in Chinese) [丁东, 闫凤利 2013 62 100304]

    [31]

    Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P, Milburn G J 2007 Rev. Mod. Phys. 79 135

    [32]

    Kok P 2008 Phys. Rev. A 77 013808

  • [1] 胡飞飞, 李思莹, 朱顺, 黄昱, 林旭斌, 张思拓, 范云茹, 周强, 刘云. 用于量子纠缠密钥的多波长对量子关联光子对产生.  , 2024, 73(23): 230304. doi: 10.7498/aps.73.20241274
    [2] 刘然, 吴泽, 李宇晨, 陈昱全, 彭新华. 基于量子Fisher信息测量的实验多体纠缠刻画.  , 2023, 72(11): 110305. doi: 10.7498/aps.72.20230356
    [3] 赖红. 基于广义等距张量的压缩多光子纠缠态量子密钥分发.  , 2023, 72(17): 170301. doi: 10.7498/aps.72.20230589
    [4] 杨光, 刘琦, 聂敏, 刘原华, 张美玲. 基于极化-空间模超纠缠的量子网络多跳纠缠交换方法研究.  , 2022, 71(10): 100301. doi: 10.7498/aps.71.20212173
    [5] 陶志炜, 任益充, 艾则孜姑丽·阿不都克热木, 刘世韦, 饶瑞中. 基于纠缠相干态的量子照明雷达.  , 2021, 70(17): 170601. doi: 10.7498/aps.70.20210462
    [6] 鹿博, 韩成银, 庄敏, 柯勇贯, 黄嘉豪, 李朝红. 超冷原子系综的非高斯纠缠态与精密测量.  , 2019, 68(4): 040306. doi: 10.7498/aps.68.20190147
    [7] 何英秋, 丁东, 彭涛, 闫凤利, 高亭. 基于自发参量下转换源二阶激发过程产生四光子超纠缠态.  , 2018, 67(6): 060302. doi: 10.7498/aps.67.20172230
    [8] 赵瑞通, 梁瑞生, 王发强. 电子自旋辅助实现光子偏振态的量子纠缠浓缩.  , 2017, 66(24): 240301. doi: 10.7498/aps.66.240301
    [9] 冷春玲, 张英俏, 计新. 利用破坏对称性的超导人造原子制备型四比特纠缠态.  , 2015, 64(18): 184207. doi: 10.7498/aps.64.184207
    [10] 任宝藏, 邓富国. 光子两自由度超并行量子计算与超纠缠态操控.  , 2015, 64(16): 160303. doi: 10.7498/aps.64.160303
    [11] 丁东, 闫凤利. 基于弱非线性实现非破坏性测量两光子Bell态及三光子Greenberger-Horne-Zeilinger态.  , 2013, 62(10): 100304. doi: 10.7498/aps.62.100304
    [12] 张英杰, 周 原, 夏云杰. 多光子Tavis-Cummings模型中两纠缠原子的纠缠演化特性.  , 2008, 57(1): 21-27. doi: 10.7498/aps.57.21
    [13] 唐有良, 刘 翔, 张小伟, 唐筱芳. 用一个纠缠态实现多粒子纠缠态的量子隐形传送.  , 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [14] 李艳玲, 冯 健, 於亚飞. 量子纠缠态的普适远程克隆.  , 2007, 56(12): 6797-6802. doi: 10.7498/aps.56.6797
    [15] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发.  , 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [16] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态.  , 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [17] 陶孟仙, 路洪, 佘卫龙. 增加光子纠缠相干态的统计性质.  , 2002, 51(9): 1996-2001. doi: 10.7498/aps.51.1996
    [18] 王丹翎, 龚旗煌, 汪凯戈, 杨国健. 光学简并参量振荡中的量子非破坏性测量.  , 2000, 49(8): 1484-1489. doi: 10.7498/aps.49.1484
    [19] 石名俊, 杜江峰, 朱栋培. 量子纯态的纠缠度.  , 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
    [20] 薛秋寒, 郭光灿. 损耗与噪声对分束器的量子非破坏性测量的影响.  , 1995, 44(9): 1410-1417. doi: 10.7498/aps.44.1410
计量
  • 文章访问数:  7559
  • PDF下载量:  8618
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-02
  • 修回日期:  2015-01-07
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map