-
Nanoporous metals (NPMs) have great potential applications in many technological areas, such as catalysis, sensing, actuation, and fuel cells, because of their unique physical and chemical properties. The cognition of related mechanical properties is one of the important bases for achieving functionalized applications. A series of large-scale molecular dynamics (MD) simulations is performed to study the mechanical properties of nanoporous sliver (NPS) under uniaxial tension. Three different topology architectures of NPS, including cube, gyroid and diamond structures, are constructed and investigated. The effects of topology architecture and relative density on the mechanical properties are discussed. The LAMMPS is used to perform MD simulations and the embedded atom method potential is utilized to describe the interatomic interactions. The applied strain rate is 109 s-1 and the applied strain increment is 0.001 in each loading step. The results show that the plastic properties of NPS mainly depend on those of ligaments and the breakage of NPS mainly occurs in ligament areas. Meanwhile, the gyroid structure has better plasticity than other structures, due to the existence of ligament in spiral form. For one structure, the ultimate strength and the Young's modulus increase with the increase of relative density. Analysis shows that the basic mechanical properties of NPS largely depend on the relative density, similar to those of porous materials. The modulus as a function of relative density displays a power-law relation and the exponents depend on the topology architectures. The exponents of three structures are in a range between 1 and 2, showing that the bending of ligament and the tension of ligament are both included during the deformation. The variation trends of modulus of diamond and gyroid structures are similar to the variation of relative density, whose possible reason is that diamond and gyroid structures are both constructed by triply periodic minimal surfaces. With the same relative density, the modulus of diamond structure is in good agreement with that of gyroid structure, and the modulus of cube structure is the minimum. The strength shows a linear relation with the relative density, indicating that the yielding behavior of NPS is dominated by the axial yielding of ligament. When three types of NPSs have the same relative density, the strength of diamond structure is the maximum, cube structure second, and gyroid structure is the minimum. In diamond structure NPS, the structure of triangular framework is formed between ligaments, resulting in a relatively higher strength. The present study will provide an atomistic insight into the understanding of deformation mechanisms of nanoporous metals, and it will provide data support for designing NPMs with optimal mechanical properties by controlling geometric structure.
[1] Zhai X, Ding Y 2017 Acta Phys. -Chim. Sin. 33 1366 (in Chinese) [翟萧,丁轶 2017 物理化学学报 33 1366]
[2] Wittstock A, Zielasek V, Biener J, Friend C M, Bäumer M 2010 Science 327 319
[3] Zhang L, Chang H, Hirata A, Wu H, Xue Q K, Chen M 2013 ACS Nano 7 4595
[4] Detsi E, Onck P R, de Hosson J T M 2013 Appl. Phys. Lett. 103 193101
[5] Ding Y, Zhang Z 2016 Nanoporous Metals for Advanced Energy Technologies (Berlin: Springer Cham) pp83-131
[6] Ye X L, Liu F, Jin H J 2014 Acta. Metall. Sin. 50 252 (in Chinese) [叶兴龙, 刘枫, 金海军 2014 金属学报 50 252]
[7] Jin H J, Wang X L, Parida S, Wang K, Seo M, Weissmller J 2010 Nano Lett. 10 187
[8] Gibson L J, Ashby M F 1997 Cellular Solids: Structure and Properties (2nd Ed.) (Cambridge: Cambridge University Press)
[9] Liu P S 2010 Acta Phys. Sin. 59 8801 (in Chinese) [刘培生 2010 59 8801]
[10] Liu P S 2010 Acta Phys. Sin. 59 4849 (in Chinese) [刘培生 2010 59 4849]
[11] Diwu M J, Hu X M 2015 Acta Phys. Sin. 64 170201 (in Chinese) [第伍旻杰,胡晓棉 2015 64 170201]
[12] Jin H J, Weissmller J 2011 Science 332 1179
[13] Liu L Z, Ye X L, Jin H J 2016 Acta Mater. 118 77
[14] Zabihzadeh S, van Petegem S, Holler M, Diaz A, Duarte L I, van Swygenhoven H 2017 Acta Mater. 131 467
[15] Volkert C A, Lilleodden E T, Kramer D, Weissmller J 2006 Appl. Phys. Lett. 89 061920
[16] Mangipudi K R, Epler E, Volkert C A 2016 Acta Mater. 119 115
[17] Feng X Q, Xia R, Li X, Li, B 2009 Appl. Phys. Lett. 94 011916
[18] Huber N, Viswanath R N, Mameka N, Markmann, J, Weißmller J 2014 Acta Mater. 67 252
[19] Pia G, Brun M, Aymerich F, Delogu F 2017 J. Mater. Sci. 52 1106
[20] Sun X Y, Xu G K, Li X, Feng X Q, Gao H 2013 J. Appl. Phys. 113 023505
[21] Li X, Gao H 2016 Nat. Mater. 15 373
[22] Abueidda D W, Al-Rub R K A, Dalaq A S, Lee D W, Khan K A, Jasiuk I 2016 Mech. Mater. 95 102
[23] Yoo D J 2011 Int. J. Precis. Eng. Man. 12 61
[24] Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443
[25] Pavia F, Curtin W A 2015 Model. Simul. Mater. Sc. 23 055002
[26] Yuan F, Huang L 2012 J. Non-Cryst. Solids 358 3481
[27] Vu-Bac N, Lahmer T, Keitel L, Zhao J, Zhuang X, Rabczuk T 2014 Mech. Mater. 68 70
[28] Luo J, Shi Y 2015 Acta Mater. 82 483
[29] Shen X, Lin X, Jia J, Wang Z, Li Z, Kim J K 2014 Carbon 80 235
[30] Pedone A, Malavasi G, Menziani M C, Segre U, Cormack A N 2008 Chem. Mater. 20 4356
[31] Stukowski A 2010 Model. Simul. Mater. Sc. 18 015012
[32] Faken D, Jónsson H 1994 Comp. Mater. Sci. 2 279
[33] Smith D R, Fickett F R 1995 J. Res. Natl. Inst. Stand. Technol. 100 119
-
[1] Zhai X, Ding Y 2017 Acta Phys. -Chim. Sin. 33 1366 (in Chinese) [翟萧,丁轶 2017 物理化学学报 33 1366]
[2] Wittstock A, Zielasek V, Biener J, Friend C M, Bäumer M 2010 Science 327 319
[3] Zhang L, Chang H, Hirata A, Wu H, Xue Q K, Chen M 2013 ACS Nano 7 4595
[4] Detsi E, Onck P R, de Hosson J T M 2013 Appl. Phys. Lett. 103 193101
[5] Ding Y, Zhang Z 2016 Nanoporous Metals for Advanced Energy Technologies (Berlin: Springer Cham) pp83-131
[6] Ye X L, Liu F, Jin H J 2014 Acta. Metall. Sin. 50 252 (in Chinese) [叶兴龙, 刘枫, 金海军 2014 金属学报 50 252]
[7] Jin H J, Wang X L, Parida S, Wang K, Seo M, Weissmller J 2010 Nano Lett. 10 187
[8] Gibson L J, Ashby M F 1997 Cellular Solids: Structure and Properties (2nd Ed.) (Cambridge: Cambridge University Press)
[9] Liu P S 2010 Acta Phys. Sin. 59 8801 (in Chinese) [刘培生 2010 59 8801]
[10] Liu P S 2010 Acta Phys. Sin. 59 4849 (in Chinese) [刘培生 2010 59 4849]
[11] Diwu M J, Hu X M 2015 Acta Phys. Sin. 64 170201 (in Chinese) [第伍旻杰,胡晓棉 2015 64 170201]
[12] Jin H J, Weissmller J 2011 Science 332 1179
[13] Liu L Z, Ye X L, Jin H J 2016 Acta Mater. 118 77
[14] Zabihzadeh S, van Petegem S, Holler M, Diaz A, Duarte L I, van Swygenhoven H 2017 Acta Mater. 131 467
[15] Volkert C A, Lilleodden E T, Kramer D, Weissmller J 2006 Appl. Phys. Lett. 89 061920
[16] Mangipudi K R, Epler E, Volkert C A 2016 Acta Mater. 119 115
[17] Feng X Q, Xia R, Li X, Li, B 2009 Appl. Phys. Lett. 94 011916
[18] Huber N, Viswanath R N, Mameka N, Markmann, J, Weißmller J 2014 Acta Mater. 67 252
[19] Pia G, Brun M, Aymerich F, Delogu F 2017 J. Mater. Sci. 52 1106
[20] Sun X Y, Xu G K, Li X, Feng X Q, Gao H 2013 J. Appl. Phys. 113 023505
[21] Li X, Gao H 2016 Nat. Mater. 15 373
[22] Abueidda D W, Al-Rub R K A, Dalaq A S, Lee D W, Khan K A, Jasiuk I 2016 Mech. Mater. 95 102
[23] Yoo D J 2011 Int. J. Precis. Eng. Man. 12 61
[24] Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443
[25] Pavia F, Curtin W A 2015 Model. Simul. Mater. Sc. 23 055002
[26] Yuan F, Huang L 2012 J. Non-Cryst. Solids 358 3481
[27] Vu-Bac N, Lahmer T, Keitel L, Zhao J, Zhuang X, Rabczuk T 2014 Mech. Mater. 68 70
[28] Luo J, Shi Y 2015 Acta Mater. 82 483
[29] Shen X, Lin X, Jia J, Wang Z, Li Z, Kim J K 2014 Carbon 80 235
[30] Pedone A, Malavasi G, Menziani M C, Segre U, Cormack A N 2008 Chem. Mater. 20 4356
[31] Stukowski A 2010 Model. Simul. Mater. Sc. 18 015012
[32] Faken D, Jónsson H 1994 Comp. Mater. Sci. 2 279
[33] Smith D R, Fickett F R 1995 J. Res. Natl. Inst. Stand. Technol. 100 119
Catalog
Metrics
- Abstract views: 8411
- PDF Downloads: 302
- Cited By: 0