Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic structure and mechanical properties of Nb-doped -TiAl intermetallic compound

Chen Zhi-Peng Ma Ya-Nan Lin Xue-Ling Pan Feng-Chun Xi Li-Ying Ma Zhi Zheng Fu Wang Yan-Qing Chen Huan-Ming

Citation:

Electronic structure and mechanical properties of Nb-doped -TiAl intermetallic compound

Chen Zhi-Peng, Ma Ya-Nan, Lin Xue-Ling, Pan Feng-Chun, Xi Li-Ying, Ma Zhi, Zheng Fu, Wang Yan-Qing, Chen Huan-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • This investigation aims at an Nb-doped -TiAl intermetallic compound system in which part of Ti or Al atoms are substituted by Nb atoms. The structural parameters, the energy band structures, the electronic densities of states and the elastic constants of Nb-doped -TiAl intermetallic compound are calculated and studied by using the first-principles method based on the density functional theory and other physical theory. The first-principle calculations presented here are based on electronic density-functional theory framework. The ultrasoft pseudopotentials and a plane-wave basis set with a cut-off energy of 320 eV are used. The generalized gradient approximation refined by Perdew and Zunger is employed for determining the exchange-correlation energy. Brillouin zone is set to be within 333 k point mesh generated by the Monkhorst-Pack scheme. The self-consistent convergence of total energy is at 1.010-6 eV/atom. In view of geometry optimization, it is shown that doping with Nb can change the structural symmetry of the -TiAl intermetallic compound. The calculated formation energies indicate that the formation energy of the system in which Ti atom is replaced by Nb atom is smaller than that of Al atom replaced by Nb atom. Accordingly, they tend to substitute Ti atom when Nb atoms are introduced into the -TiAl system. The calculated band structures of Nb-doped -TiAl system show that they all have metallic conductivities, which implies that the brittleness of -TiAl intermetallic compound could be tailored by Nb-doping. The partial densities of states of the Nb-doped and pure -TiAl systems indicate that the intensity of covalent bond between Ti atom and Nb atom is weaker than covalent bond between Ti atom and Al atom while the Ti atoms are replaced by Nb atoms in the -TiAl system. What is more, the density of states near Fermi energy increases after Al atoms has been replaced by Nb atoms in the -TiAl system. This is an important factor for improving the ductility of -TiAl intermetallic compound. The calculated elastic constants, bulk modulus and shear modulus of Nb-doped -TiAl systems indicate that the ductility and the fracture strength of Nb-doped -TiAl system are both better than those of pure -TiAl system, especially in the system where part of Al atoms are replaced by Nb atoms. The plastic deformation capacity of Nb-doped -TiAl system is thus improved comparatively.
      Corresponding author: Chen Huan-Ming, bschm@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11662014, 11764032) and the Major Innovation Projects for Building First-class Universities in China's Western Region (Grant No. ZKZD2017006).
    [1]

    Rananujan R V 2000 Int. Mater. Rev. 45 217

    [2]

    Chen Y Y, Kong F T, Han J C, Chen Z Y, Tian J 2005 Intermetallics 13 263

    [3]

    Wolf W, Podloucky R, Rogl P, Erschbaumer H 1996 Intermetallics 4 201

    [4]

    Jones C, Farkas C 1996 Comp. Mater. Sci. 6 231

    [5]

    Song Y, Yang R, Li D, Hu Z Q, Guo Z X 2000 Intermetallics 8 563

    [6]

    Song Y, Guo Z X, Yang R 2002 J. L. Met. 2 115

    [7]

    Hao Y L, Yang R, Song Y, Cui Y Y, Li D, Niinomi M 2004 Intermetallics 12 951

    [8]

    Chao J 2008 Acta Mater. 56 6224

    [9]

    Tang P Y, Tang B Y, Su X P 2011 Comp. Mater. Sci. 50 1467

    [10]

    Wang L, Shang J X, Wang F H, Zhang Y 2013 Appl. Surf. Sci. 276 198

    [11]

    Chang Y T, Sun Q L, Long Y, Wang M W 2014 Chin. Phys. Lett. 31 127501

    [12]

    Xu N N, Li G P, Lin Q L, Liu H, Bao L M 2016 Chin. Phys. B 25 116103

    [13]

    Pan F C, Chen Z P, Lin X L, Zheng F, Wang X M, Chen H M 2016 Chin. Phys. B 25 096108

    [14]

    Dang H L, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 2838 (in Chinese)[党宏丽, 王崇愚, 于涛 2007 56 2838]

    [15]

    Wang Y P, Wang Y P, Shi L B 2015 Chin. Phys. Lett. 32 016102

    [16]

    Guan L, Tan F X, Jia G Q, Shen G M, Liu B T, Li X 2016 Chin. Phys. Lett. 33 087501

    [17]

    Li H, Wang S Q, Ye H Q 2009 Acta Phys. Sin. 58 S224 (in Chinese)[李虹, 王绍青, 叶恒强 2009 58 S224]

    [18]

    Wu X X, Wang Q E, Wang F H, Zhou Y S 2010 Acta Phys. Sin. 59 7278 (in Chinese)[吴小霞, 王乾恩, 王福合, 周云松 2010 59 7278]

    [19]

    Zhu G L, Shu D, Dai Y B, Wang J, Sun B D 2009 Acta Phys. Sin. 58 S210 (in Chinese)[祝国梁, 疏达, 戴永兵, 王俊, 孙宝德 2009 58 S210]

    [20]

    Song Y, Xing F J, Dai J H, Yang R 2014 Intermetallics 49 1

    [21]

    Wang B D, Dai J H, Wu X, Song Y, Yang R 2015 Intermetallics 60 58

    [22]

    Karre R, Niranjan M K, Dey S R 2015 Mater. Sci. Eng. C 50 52

    [23]

    Zhang S Z, Cui H, Li M M, Yu H, Vitos L, Yang R, Hu Q M 2016 Mater. Design. 110 80

    [24]

    Li Z Z, Wei Y, Zhou H B, Lu G H 2016 Eur. Phys. J. B 89 280

    [25]

    Hu H, Wu X Z, Wang R, Li W G, Liu Q 2016 J. Alloy. Compd. 658 689

    [26]

    Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101 (in Chinese)[王海燕, 胡前库, 杨文明, 李旭升 2016 65 077101]

    [27]

    Song Q G, Qin G S, Yang B B, Jiang Q J, Hu X L 2016 Acta Phys. Sin. 65 046102 (in Chinese)[宋庆功, 秦国顺, 杨宝宝, 将清杰, 胡雪兰 2016 65 046102]

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [29]

    Kawabata T, Tamura T, Izumi O 1993 Metal. Trans. A 24 141

    [30]

    Nye J F 1985 Physical Properties of Crystal Their Representation by Tensors and Matrices (Oxford:Oxford University Press) pp140-141

    [31]

    Hill R 1952 Proc. Phys. Soc. 65 349

    [32]

    Pugh S F 1954 Phios. Mag. 45 823

    [33]

    Gao F M 2017 Sci. Rep. 7 40276

    [34]

    Lin X L, Chen Z P, Pan F C, Chen H M 2016 J. Ningxia University (Natural Science Edition) 37 332 (in Chinese)[林雪玲, 陈治鹏, 潘凤春, 陈焕铭 2016 宁夏大学学报(自然科学版) 37 332]

  • [1]

    Rananujan R V 2000 Int. Mater. Rev. 45 217

    [2]

    Chen Y Y, Kong F T, Han J C, Chen Z Y, Tian J 2005 Intermetallics 13 263

    [3]

    Wolf W, Podloucky R, Rogl P, Erschbaumer H 1996 Intermetallics 4 201

    [4]

    Jones C, Farkas C 1996 Comp. Mater. Sci. 6 231

    [5]

    Song Y, Yang R, Li D, Hu Z Q, Guo Z X 2000 Intermetallics 8 563

    [6]

    Song Y, Guo Z X, Yang R 2002 J. L. Met. 2 115

    [7]

    Hao Y L, Yang R, Song Y, Cui Y Y, Li D, Niinomi M 2004 Intermetallics 12 951

    [8]

    Chao J 2008 Acta Mater. 56 6224

    [9]

    Tang P Y, Tang B Y, Su X P 2011 Comp. Mater. Sci. 50 1467

    [10]

    Wang L, Shang J X, Wang F H, Zhang Y 2013 Appl. Surf. Sci. 276 198

    [11]

    Chang Y T, Sun Q L, Long Y, Wang M W 2014 Chin. Phys. Lett. 31 127501

    [12]

    Xu N N, Li G P, Lin Q L, Liu H, Bao L M 2016 Chin. Phys. B 25 116103

    [13]

    Pan F C, Chen Z P, Lin X L, Zheng F, Wang X M, Chen H M 2016 Chin. Phys. B 25 096108

    [14]

    Dang H L, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 2838 (in Chinese)[党宏丽, 王崇愚, 于涛 2007 56 2838]

    [15]

    Wang Y P, Wang Y P, Shi L B 2015 Chin. Phys. Lett. 32 016102

    [16]

    Guan L, Tan F X, Jia G Q, Shen G M, Liu B T, Li X 2016 Chin. Phys. Lett. 33 087501

    [17]

    Li H, Wang S Q, Ye H Q 2009 Acta Phys. Sin. 58 S224 (in Chinese)[李虹, 王绍青, 叶恒强 2009 58 S224]

    [18]

    Wu X X, Wang Q E, Wang F H, Zhou Y S 2010 Acta Phys. Sin. 59 7278 (in Chinese)[吴小霞, 王乾恩, 王福合, 周云松 2010 59 7278]

    [19]

    Zhu G L, Shu D, Dai Y B, Wang J, Sun B D 2009 Acta Phys. Sin. 58 S210 (in Chinese)[祝国梁, 疏达, 戴永兵, 王俊, 孙宝德 2009 58 S210]

    [20]

    Song Y, Xing F J, Dai J H, Yang R 2014 Intermetallics 49 1

    [21]

    Wang B D, Dai J H, Wu X, Song Y, Yang R 2015 Intermetallics 60 58

    [22]

    Karre R, Niranjan M K, Dey S R 2015 Mater. Sci. Eng. C 50 52

    [23]

    Zhang S Z, Cui H, Li M M, Yu H, Vitos L, Yang R, Hu Q M 2016 Mater. Design. 110 80

    [24]

    Li Z Z, Wei Y, Zhou H B, Lu G H 2016 Eur. Phys. J. B 89 280

    [25]

    Hu H, Wu X Z, Wang R, Li W G, Liu Q 2016 J. Alloy. Compd. 658 689

    [26]

    Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101 (in Chinese)[王海燕, 胡前库, 杨文明, 李旭升 2016 65 077101]

    [27]

    Song Q G, Qin G S, Yang B B, Jiang Q J, Hu X L 2016 Acta Phys. Sin. 65 046102 (in Chinese)[宋庆功, 秦国顺, 杨宝宝, 将清杰, 胡雪兰 2016 65 046102]

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [29]

    Kawabata T, Tamura T, Izumi O 1993 Metal. Trans. A 24 141

    [30]

    Nye J F 1985 Physical Properties of Crystal Their Representation by Tensors and Matrices (Oxford:Oxford University Press) pp140-141

    [31]

    Hill R 1952 Proc. Phys. Soc. 65 349

    [32]

    Pugh S F 1954 Phios. Mag. 45 823

    [33]

    Gao F M 2017 Sci. Rep. 7 40276

    [34]

    Lin X L, Chen Z P, Pan F C, Chen H M 2016 J. Ningxia University (Natural Science Edition) 37 332 (in Chinese)[林雪玲, 陈治鹏, 潘凤春, 陈焕铭 2016 宁夏大学学报(自然科学版) 37 332]

  • [1] Hu Ting-He, Li Zhi-Hao, Zhang Qian-Fan. First principles and molecular dynamics simulations of effect of dopants on properties of high strength steel for hydrogen storage vessels. Acta Physica Sinica, 2024, 73(6): 067101. doi: 10.7498/aps.73.20231735
    [2] Wang Xiao, Huang Sheng-Xiang, Luo Heng, Deng Lian-Wen, Wu Hao, Xu Yun-Chao, He Jun, He Long-Hui. First-principles study of electronic structure and optical properties of nickel-doped multilayer graphene. Acta Physica Sinica, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [3] Deng Shi-Jie, Zhao Yu-Hong, Hou Hua, Wen Zhi-Qin, Han Pei-De. Structural, mechanical and thermodynamic properties of Ti2AlX (X= C, N) at high pressure. Acta Physica Sinica, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [4] Yuan Chen-Chen. Bonding nature and the origin of ductility of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [5] Li Li-Li, Zhang Xiao-Hong, Wang Yu-Long, Guo Jia-Hui, Zhang Shuang. Simulation of mechanical properties based on microstructure in polyethylene/montmorillonite nanocomposites. Acta Physica Sinica, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [6] Wang Hai-Yan, Hu Qian-Ku, Yang Wen-Peng, Li Xu-Sheng. Influence of metal element doping on the mechanical properties of TiAl alloy. Acta Physica Sinica, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [7] Hou Yu-Hua, Huang You-Lin, Liu Zhong-Wu, Zeng De-Chang. Theoretical study on the influence of rare earth doping on the electronic structure and magnetic properties of cobalt ferrite. Acta Physica Sinica, 2015, 64(3): 037501. doi: 10.7498/aps.64.037501
    [8] Yang Duo, Zhong Ning, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Microstructures and mechanical properties of (Ti, N)/Al nanocomposite films by magnetron sputtering. Acta Physica Sinica, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [9] Yu Li-Hua, Ma Bing-Yang, Cao Jun, Xu Jun-Hua. Structures, mechanical and tribological properties of (Zr,V)N composite films. Acta Physica Sinica, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [10] Wang Ying, Lu Tie-Cheng, Wang Yue-Zhong, Yue Shun-Li, Qi Jian-Qi, Pan Lei. Investigation of the electronic and mechanical properties of Al2O3-AlN solid solution by virtual crystal approximation. Acta Physica Sinica, 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [11] Luo Qing-Hong, Lou Yan-Zhi, Zhao Zhen-Ye, Yang Hui-Sheng. Effect of annealing on microstructure and mechanical propertiesof AlTiN multilayer coatings. Acta Physica Sinica, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [12] Luo Qing-Hong, Lu Yong-Hao, Lou Yan-Zhi. Microstructure and mechanical properties of Ti-B-C-N nanocomposite coatings. Acta Physica Sinica, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [13] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [14] Yu Wei-Yang, Tang Bi-Yu, Peng Li-Ming, Ding Wen-Jiang. Electronic structure and mechanical properties of α-Mg3Sb2. Acta Physica Sinica, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [15] Li Hong, Wang Shao-Qing, Ye Heng-Qiang. Influence of Nb doping on oxidation resistance of γ-TiAl:A first principles study. Acta Physica Sinica, 2009, 58(13): 224-S229. doi: 10.7498/aps.58.224
    [16] Du Juan, Ji Zhen-Guo. The effect of Ⅲ-family element doping on electronic structures and electrical characteristics of SnO2. Acta Physica Sinica, 2007, 56(4): 2388-2392. doi: 10.7498/aps.56.2388
    [17] Ma Guo-Jia, Liu Xi-Liang, Zhang Hua-Fang, Wu Hong-Chen, Peng Li-Ping, Jiang Yan-Li. Influences of acetylene gas flow rate on mechanical properties and chemical structure of nanocomposite TiC diamond-like carbon films. Acta Physica Sinica, 2007, 56(4): 2377-2381. doi: 10.7498/aps.56.2377
    [18] Li Teng, Li Wei, Pan Wei, Li Xiu-Mei. Effect of microstructure on the mechanical properties of Fe45—50 Cr30—35Co20—25Mo0—4Zr0—2 alloy. Acta Physica Sinica, 2005, 54(9): 4395-4399. doi: 10.7498/aps.54.4395
    [19] Zheng Li-Jing, Li Shu-Suo, Li Huan-Xi, Chen Chang-Qi, Han Ya-Fang, Dong Bao-Zhong. Small angle x-ray scattering study on microstructure and mechanical property evo lutions of equal-channel angular pressed 7050 Al alloy. Acta Physica Sinica, 2005, 54(4): 1665-1670. doi: 10.7498/aps.54.1665
    [20] Wei Lun, Mei Fang-Hua, Shao Nan, Dong Yun-Shan, Li Ge-Yang. The coherent growth and mechanical properties of non-isostructural TiN/TiB2 nanomultilayers. Acta Physica Sinica, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
Metrics
  • Abstract views:  7543
  • PDF Downloads:  224
  • Cited By: 0
Publishing process
  • Received Date:  08 May 2017
  • Accepted Date:  13 July 2017
  • Published Online:  05 October 2017

/

返回文章
返回
Baidu
map