-
模拟分子的结构与行为有助于更深刻地分析聚乙烯/蒙脱土(PE/MMT)纳米复合材料力学性能变化的微观机理.为此,以分子动力学为依据,利用Materials studio构建聚乙烯/蒙脱土纳米复合材料模型.在普适力场作用下,通过X射线衍射、径向分布函数以及相互作用能分别对纳米复合材料和纳米蒙脱土的微观结构和性能进行分析.仿真结果表明:有机化处理使蒙脱土的层间距增大79%;在蒙脱土质量分数为4.0 wt%时,PE/MMT纳米复合材料中存在明显的氢键作用,聚乙烯分子和蒙脱土片层间的相互作用能高达-390 kcal/mol,界面作用得到明显提高,最终形成稳定的材料结构,同时力学性能相比纯聚乙烯材料也得到改善,其中杨氏模量、体积模量以及剪切模量分别提高38%,21%和40%.分子模拟结果与实验实测结果相符,并验证了有机化蒙脱土改性聚乙烯绝缘材料会产生氢键作用.
-
关键词:
- 聚乙烯/蒙脱土纳米复合材料 /
- 微观结构 /
- 力学性能
In order to explore the microscopic mechanism of mechanical properties in polyethylene/montmorillonite (PE/MMT) nanocomposite material,the molecular model and the molecule structure are simulated by simulation software,and the mechanisms of various complex phenomena of mechanical properties in PE/MMT nanocomposite material can be understood more in depth in the paper.To achieve this,the molecular model is developed under 423 K based on the molecular dynamics method and using the modules of Amorphous Cell as well,Forcite Tools and Reflex in the simulation software material studio includes polyethylene model,montmorillonite models without organization,organic montmorillonite model,and PE/MMT nanocomposites model.Then,microstructure and mechanical properties of PE/MMT nanocomposite material are analyzed by X-ray diffraction,radial distribution function and interaction energy test under universal force field,respectively.Some important findings emerge from the simulation results.First,after the molecular dynamic process of canonical ensemble (NVT) and constant-pressure,constant-temperature ensemble (NPT),the fluctuations in temperature and energy of polyethylene,montmorillonite without organization,organic montmorillonite,and PE/MMT nanocomposite material are all less than 5%.This implies that the low energy state is occupied and steady structures are formed in PE/MMT nanocomposite material.Second,the inter-layer spacing of organic montmorillonite is expanded to 20 due to cations of 18 alkyl three methyl ammonium chloride,which is increased by 79% compared with that of montmorillonite without organization.Meantime,the expansibility of PE/MMT nanocomposite material is obvious,and the density and volume of PE/MMT nanocomposite material are improved by -32% and 393% respectively,compared with those of organic montmorillonite.Third,when the mass fraction of organic montmorillonite reaches 4.0 wt%,the hydrogen bonding interaction obviously exists in PE/MMT nanocomposite material,and the interaction energy between polyethylene and montmorillonite layers has a maximum value of up to -390 kcal/mol,which leads to the stable structure of PE/MMT nanocomposite material and the significant improvement of the interfacial bonding between montmorillonite and polyethylene.Fourth,mechanical properties are significantly improved compared with that of polyethylene under elastic deformation,which is 4.0 wt% organic montmorillonite in PE/MMT nanocomposite material.Young's modulus,bulk modulus and shear modulus are increased by 38%,21% and 40%,respectively.Finally,the simulation results are compared with actual observed ones.The consistency between simulation results and actually observed ones can prove that the method of modeling PE/MMT nanocomposite material is correct and effective.Furthermore,when polyethylene chains enter into the layers of organic montmorillonite,it is verified that the PE/MMT nanocomposites can be formed and that the reason for the improvement of mechanical properties in PE/MMT nanocomposite material is the emergence of hydrogen bond.[1] Suprakas S R, Masami O 2003 Prog. Polym. Sci. 28 1539
[2] Zhang L D, Mu J M 2001 Nano Materials and Nano Structures (1st Ed.) (Beijing: Science Press) pp51-65(in Chinese) [张立德, 牟季美2001纳米材料和纳米结构第 1版(北京:科学出版社)第51–65页]
[3] Suprakas S R, Masami O 2003 Prog. Polym. Sci. 28 1539
[4] Lei Q Q, Fan Y, Wang X 2000 J. Inorg. Mater. 15 1107 (in Chinese) [高镰, 李炜群, 王宏志2000无机材料学报15 1107]
[5] Yang D, Zhong N, Shang H L, Sun S Y, Li G Y 2013 Acta Phys. Sin. 62 036801 (in Chinese) [杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬2013 62 036801]
[6] Lu Y, Li J L, Yang J F, Li P 2015 J. Inorg. Mater. 30 277 (in Chinese) [鲁元, 李京龙, 杨建锋, 李鹏2015无机材料学报30 277]
[7] Cheng S, L H M, Cui J Y 2012 Acta Phys. Sin. 61 036203 (in Chinese) [程塞, 吕慧民, 崔静雅2012 61 036203]
[8] Yu L H, Ma B Y, Cao J, Xu J H 2013 Acta Phys. Sin. 62 076202 (in Chinese) [喻利花, 马冰洋, 曹峻, 许俊华2013 62 076202]
[9] Rappe A K, Casewit C J, Colwell K S, GoddardI Ⅱ W A, Skiff W M 1992 J. Am. Chem. Soc. 114 10024
[10] Kang J W, Choi K, Jo W H, Hsu S L 1998 Polymer 39 7079
[11] Boek E S, Coveney P V, Skipper N T 1995 Langmuir 11 4629
[12] Wang J, Wang J X, Zeng F G, Wu X L 2010 Acta Chim. Sin. 68 1653 (in Chinese) [王进, 王军霞, 曾凡桂, 吴秀玲2010化学学报68 1653]
[13] Xu J F, Gu T T, Shen W L, Wang X P, Ma Y W, Peng L, Li X D 2016 J. China Univ. Petroleum (Edition of Natural Science) 40 83(in Chinese) [徐加放, 顾甜甜, 沈文丽, 王晓璞, 马英文, 彭林, 李小迪2016中国石油大学学报(自然科学版) 40 83]
[14] Young D A, Smith D E 2000 J. Phys. Chem. B 104 9163
[15] Qi Z N, Shang W Y 2002 Theory and Practice of Polymer/Layered Silicate Nanocomposites (1st Ed.) (Beijing: Chemical Industry Press) p5(in Chinese) [漆宗能, 尚文宇2002聚合物/层状硅酸盐纳米复合材料理论与实践(第1 版) (北京:化学工业出版社)第5页]
[16] Wang J, Zeng F G, Wang J X 2005 J. Chin. Ceram. Soc. 33 996(in Chinese) [王进, 曾凡桂, 王军霞2005硅酸盐学报33 996]
[17] Jia H P, Su X J, Hou G L, Cao X P, Bi S, Liu Z H 2013 J. Chem. Ind. Eng. 64 1862(in Chinese) [贾海鹏, 苏勋家, 侯根良, 曹小平, 毕松, 刘朝辉2013化工学报64 1862]
[18] Guo J H 2014 M. S. Dissertation (Harbin: Harbin University of Science and Technology) (in Chinese) [国家辉2014硕士学位论文(哈尔滨:哈尔滨理工大学)]
[19] Gao J G 2009 M. S. Dissertation (Harbin: Harbin University of Science and Technology) (in Chinese) [高俊国2009硕士学位论文(哈尔滨:哈尔滨理工大学)]
[20] Zhang X H, Guo N, Gao J G 2009 High Voltage Engineering 35 282(in Chinese) [张晓虹, 郭宁, 高俊国2009高电压技术35 282]
[21] Xu Z L 2006 Elastic Mechanics (4th Ed.) (Beijing: Higher Education Press) pp20-203(in Chinese) [徐芝纶2006弹性力学第 4版(北京:高等教育出版社)第20–203页]
[22] Cheng Y J, Guo N, Wang R S, Zhang X H 2015 Acta Mater. Compos. Sin. 32 94 (in Chinese) [程羽佳, 郭宁, 王若石, 张晓虹2015复合材料学报32 94]
[23] Danikas M G, Tanaka T 2009 IEEE Electr. Insul. Mag. 25 19
-
[1] Suprakas S R, Masami O 2003 Prog. Polym. Sci. 28 1539
[2] Zhang L D, Mu J M 2001 Nano Materials and Nano Structures (1st Ed.) (Beijing: Science Press) pp51-65(in Chinese) [张立德, 牟季美2001纳米材料和纳米结构第 1版(北京:科学出版社)第51–65页]
[3] Suprakas S R, Masami O 2003 Prog. Polym. Sci. 28 1539
[4] Lei Q Q, Fan Y, Wang X 2000 J. Inorg. Mater. 15 1107 (in Chinese) [高镰, 李炜群, 王宏志2000无机材料学报15 1107]
[5] Yang D, Zhong N, Shang H L, Sun S Y, Li G Y 2013 Acta Phys. Sin. 62 036801 (in Chinese) [杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬2013 62 036801]
[6] Lu Y, Li J L, Yang J F, Li P 2015 J. Inorg. Mater. 30 277 (in Chinese) [鲁元, 李京龙, 杨建锋, 李鹏2015无机材料学报30 277]
[7] Cheng S, L H M, Cui J Y 2012 Acta Phys. Sin. 61 036203 (in Chinese) [程塞, 吕慧民, 崔静雅2012 61 036203]
[8] Yu L H, Ma B Y, Cao J, Xu J H 2013 Acta Phys. Sin. 62 076202 (in Chinese) [喻利花, 马冰洋, 曹峻, 许俊华2013 62 076202]
[9] Rappe A K, Casewit C J, Colwell K S, GoddardI Ⅱ W A, Skiff W M 1992 J. Am. Chem. Soc. 114 10024
[10] Kang J W, Choi K, Jo W H, Hsu S L 1998 Polymer 39 7079
[11] Boek E S, Coveney P V, Skipper N T 1995 Langmuir 11 4629
[12] Wang J, Wang J X, Zeng F G, Wu X L 2010 Acta Chim. Sin. 68 1653 (in Chinese) [王进, 王军霞, 曾凡桂, 吴秀玲2010化学学报68 1653]
[13] Xu J F, Gu T T, Shen W L, Wang X P, Ma Y W, Peng L, Li X D 2016 J. China Univ. Petroleum (Edition of Natural Science) 40 83(in Chinese) [徐加放, 顾甜甜, 沈文丽, 王晓璞, 马英文, 彭林, 李小迪2016中国石油大学学报(自然科学版) 40 83]
[14] Young D A, Smith D E 2000 J. Phys. Chem. B 104 9163
[15] Qi Z N, Shang W Y 2002 Theory and Practice of Polymer/Layered Silicate Nanocomposites (1st Ed.) (Beijing: Chemical Industry Press) p5(in Chinese) [漆宗能, 尚文宇2002聚合物/层状硅酸盐纳米复合材料理论与实践(第1 版) (北京:化学工业出版社)第5页]
[16] Wang J, Zeng F G, Wang J X 2005 J. Chin. Ceram. Soc. 33 996(in Chinese) [王进, 曾凡桂, 王军霞2005硅酸盐学报33 996]
[17] Jia H P, Su X J, Hou G L, Cao X P, Bi S, Liu Z H 2013 J. Chem. Ind. Eng. 64 1862(in Chinese) [贾海鹏, 苏勋家, 侯根良, 曹小平, 毕松, 刘朝辉2013化工学报64 1862]
[18] Guo J H 2014 M. S. Dissertation (Harbin: Harbin University of Science and Technology) (in Chinese) [国家辉2014硕士学位论文(哈尔滨:哈尔滨理工大学)]
[19] Gao J G 2009 M. S. Dissertation (Harbin: Harbin University of Science and Technology) (in Chinese) [高俊国2009硕士学位论文(哈尔滨:哈尔滨理工大学)]
[20] Zhang X H, Guo N, Gao J G 2009 High Voltage Engineering 35 282(in Chinese) [张晓虹, 郭宁, 高俊国2009高电压技术35 282]
[21] Xu Z L 2006 Elastic Mechanics (4th Ed.) (Beijing: Higher Education Press) pp20-203(in Chinese) [徐芝纶2006弹性力学第 4版(北京:高等教育出版社)第20–203页]
[22] Cheng Y J, Guo N, Wang R S, Zhang X H 2015 Acta Mater. Compos. Sin. 32 94 (in Chinese) [程羽佳, 郭宁, 王若石, 张晓虹2015复合材料学报32 94]
[23] Danikas M G, Tanaka T 2009 IEEE Electr. Insul. Mag. 25 19
计量
- 文章访问数: 7490
- PDF下载量: 372
- 被引次数: 0