-
运用基于密度泛函理论的第一性原理方法计算了Nb掺杂-TiAl金属间化合物的结构参数、能带结构、电子态密度及弹性常数.结果表明:Nb替代Ti掺杂相比Nb替代Al掺杂的形成能低,Nb在替位掺杂时更倾向于取代Ti原子形成稳定的结构,Nb替代Ti掺杂能够提高-TiAl金属间化合物的抵御塑性变形能力、断裂强度和延展性;与Nb替代Ti掺杂相比,Nb替代Al掺杂同样增强-TiAl金属间化合物的断裂强度且其增强延展性的效果更好,但抵御塑性变形的能力有所削弱.
-
关键词:
- Nb掺杂 /
- -TiAl金属间化合物 /
- 电子结构 /
- 力学性能
This investigation aims at an Nb-doped -TiAl intermetallic compound system in which part of Ti or Al atoms are substituted by Nb atoms. The structural parameters, the energy band structures, the electronic densities of states and the elastic constants of Nb-doped -TiAl intermetallic compound are calculated and studied by using the first-principles method based on the density functional theory and other physical theory. The first-principle calculations presented here are based on electronic density-functional theory framework. The ultrasoft pseudopotentials and a plane-wave basis set with a cut-off energy of 320 eV are used. The generalized gradient approximation refined by Perdew and Zunger is employed for determining the exchange-correlation energy. Brillouin zone is set to be within 333 k point mesh generated by the Monkhorst-Pack scheme. The self-consistent convergence of total energy is at 1.010-6 eV/atom. In view of geometry optimization, it is shown that doping with Nb can change the structural symmetry of the -TiAl intermetallic compound. The calculated formation energies indicate that the formation energy of the system in which Ti atom is replaced by Nb atom is smaller than that of Al atom replaced by Nb atom. Accordingly, they tend to substitute Ti atom when Nb atoms are introduced into the -TiAl system. The calculated band structures of Nb-doped -TiAl system show that they all have metallic conductivities, which implies that the brittleness of -TiAl intermetallic compound could be tailored by Nb-doping. The partial densities of states of the Nb-doped and pure -TiAl systems indicate that the intensity of covalent bond between Ti atom and Nb atom is weaker than covalent bond between Ti atom and Al atom while the Ti atoms are replaced by Nb atoms in the -TiAl system. What is more, the density of states near Fermi energy increases after Al atoms has been replaced by Nb atoms in the -TiAl system. This is an important factor for improving the ductility of -TiAl intermetallic compound. The calculated elastic constants, bulk modulus and shear modulus of Nb-doped -TiAl systems indicate that the ductility and the fracture strength of Nb-doped -TiAl system are both better than those of pure -TiAl system, especially in the system where part of Al atoms are replaced by Nb atoms. The plastic deformation capacity of Nb-doped -TiAl system is thus improved comparatively.[1] Rananujan R V 2000 Int. Mater. Rev. 45 217
[2] Chen Y Y, Kong F T, Han J C, Chen Z Y, Tian J 2005 Intermetallics 13 263
[3] Wolf W, Podloucky R, Rogl P, Erschbaumer H 1996 Intermetallics 4 201
[4] Jones C, Farkas C 1996 Comp. Mater. Sci. 6 231
[5] Song Y, Yang R, Li D, Hu Z Q, Guo Z X 2000 Intermetallics 8 563
[6] Song Y, Guo Z X, Yang R 2002 J. L. Met. 2 115
[7] Hao Y L, Yang R, Song Y, Cui Y Y, Li D, Niinomi M 2004 Intermetallics 12 951
[8] Chao J 2008 Acta Mater. 56 6224
[9] Tang P Y, Tang B Y, Su X P 2011 Comp. Mater. Sci. 50 1467
[10] Wang L, Shang J X, Wang F H, Zhang Y 2013 Appl. Surf. Sci. 276 198
[11] Chang Y T, Sun Q L, Long Y, Wang M W 2014 Chin. Phys. Lett. 31 127501
[12] Xu N N, Li G P, Lin Q L, Liu H, Bao L M 2016 Chin. Phys. B 25 116103
[13] Pan F C, Chen Z P, Lin X L, Zheng F, Wang X M, Chen H M 2016 Chin. Phys. B 25 096108
[14] Dang H L, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 2838 (in Chinese)[党宏丽, 王崇愚, 于涛 2007 56 2838]
[15] Wang Y P, Wang Y P, Shi L B 2015 Chin. Phys. Lett. 32 016102
[16] Guan L, Tan F X, Jia G Q, Shen G M, Liu B T, Li X 2016 Chin. Phys. Lett. 33 087501
[17] Li H, Wang S Q, Ye H Q 2009 Acta Phys. Sin. 58 S224 (in Chinese)[李虹, 王绍青, 叶恒强 2009 58 S224]
[18] Wu X X, Wang Q E, Wang F H, Zhou Y S 2010 Acta Phys. Sin. 59 7278 (in Chinese)[吴小霞, 王乾恩, 王福合, 周云松 2010 59 7278]
[19] Zhu G L, Shu D, Dai Y B, Wang J, Sun B D 2009 Acta Phys. Sin. 58 S210 (in Chinese)[祝国梁, 疏达, 戴永兵, 王俊, 孙宝德 2009 58 S210]
[20] Song Y, Xing F J, Dai J H, Yang R 2014 Intermetallics 49 1
[21] Wang B D, Dai J H, Wu X, Song Y, Yang R 2015 Intermetallics 60 58
[22] Karre R, Niranjan M K, Dey S R 2015 Mater. Sci. Eng. C 50 52
[23] Zhang S Z, Cui H, Li M M, Yu H, Vitos L, Yang R, Hu Q M 2016 Mater. Design. 110 80
[24] Li Z Z, Wei Y, Zhou H B, Lu G H 2016 Eur. Phys. J. B 89 280
[25] Hu H, Wu X Z, Wang R, Li W G, Liu Q 2016 J. Alloy. Compd. 658 689
[26] Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101 (in Chinese)[王海燕, 胡前库, 杨文明, 李旭升 2016 65 077101]
[27] Song Q G, Qin G S, Yang B B, Jiang Q J, Hu X L 2016 Acta Phys. Sin. 65 046102 (in Chinese)[宋庆功, 秦国顺, 杨宝宝, 将清杰, 胡雪兰 2016 65 046102]
[28] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Kawabata T, Tamura T, Izumi O 1993 Metal. Trans. A 24 141
[30] Nye J F 1985 Physical Properties of Crystal Their Representation by Tensors and Matrices (Oxford:Oxford University Press) pp140-141
[31] Hill R 1952 Proc. Phys. Soc. 65 349
[32] Pugh S F 1954 Phios. Mag. 45 823
[33] Gao F M 2017 Sci. Rep. 7 40276
[34] Lin X L, Chen Z P, Pan F C, Chen H M 2016 J. Ningxia University (Natural Science Edition) 37 332 (in Chinese)[林雪玲, 陈治鹏, 潘凤春, 陈焕铭 2016 宁夏大学学报(自然科学版) 37 332]
-
[1] Rananujan R V 2000 Int. Mater. Rev. 45 217
[2] Chen Y Y, Kong F T, Han J C, Chen Z Y, Tian J 2005 Intermetallics 13 263
[3] Wolf W, Podloucky R, Rogl P, Erschbaumer H 1996 Intermetallics 4 201
[4] Jones C, Farkas C 1996 Comp. Mater. Sci. 6 231
[5] Song Y, Yang R, Li D, Hu Z Q, Guo Z X 2000 Intermetallics 8 563
[6] Song Y, Guo Z X, Yang R 2002 J. L. Met. 2 115
[7] Hao Y L, Yang R, Song Y, Cui Y Y, Li D, Niinomi M 2004 Intermetallics 12 951
[8] Chao J 2008 Acta Mater. 56 6224
[9] Tang P Y, Tang B Y, Su X P 2011 Comp. Mater. Sci. 50 1467
[10] Wang L, Shang J X, Wang F H, Zhang Y 2013 Appl. Surf. Sci. 276 198
[11] Chang Y T, Sun Q L, Long Y, Wang M W 2014 Chin. Phys. Lett. 31 127501
[12] Xu N N, Li G P, Lin Q L, Liu H, Bao L M 2016 Chin. Phys. B 25 116103
[13] Pan F C, Chen Z P, Lin X L, Zheng F, Wang X M, Chen H M 2016 Chin. Phys. B 25 096108
[14] Dang H L, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 2838 (in Chinese)[党宏丽, 王崇愚, 于涛 2007 56 2838]
[15] Wang Y P, Wang Y P, Shi L B 2015 Chin. Phys. Lett. 32 016102
[16] Guan L, Tan F X, Jia G Q, Shen G M, Liu B T, Li X 2016 Chin. Phys. Lett. 33 087501
[17] Li H, Wang S Q, Ye H Q 2009 Acta Phys. Sin. 58 S224 (in Chinese)[李虹, 王绍青, 叶恒强 2009 58 S224]
[18] Wu X X, Wang Q E, Wang F H, Zhou Y S 2010 Acta Phys. Sin. 59 7278 (in Chinese)[吴小霞, 王乾恩, 王福合, 周云松 2010 59 7278]
[19] Zhu G L, Shu D, Dai Y B, Wang J, Sun B D 2009 Acta Phys. Sin. 58 S210 (in Chinese)[祝国梁, 疏达, 戴永兵, 王俊, 孙宝德 2009 58 S210]
[20] Song Y, Xing F J, Dai J H, Yang R 2014 Intermetallics 49 1
[21] Wang B D, Dai J H, Wu X, Song Y, Yang R 2015 Intermetallics 60 58
[22] Karre R, Niranjan M K, Dey S R 2015 Mater. Sci. Eng. C 50 52
[23] Zhang S Z, Cui H, Li M M, Yu H, Vitos L, Yang R, Hu Q M 2016 Mater. Design. 110 80
[24] Li Z Z, Wei Y, Zhou H B, Lu G H 2016 Eur. Phys. J. B 89 280
[25] Hu H, Wu X Z, Wang R, Li W G, Liu Q 2016 J. Alloy. Compd. 658 689
[26] Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101 (in Chinese)[王海燕, 胡前库, 杨文明, 李旭升 2016 65 077101]
[27] Song Q G, Qin G S, Yang B B, Jiang Q J, Hu X L 2016 Acta Phys. Sin. 65 046102 (in Chinese)[宋庆功, 秦国顺, 杨宝宝, 将清杰, 胡雪兰 2016 65 046102]
[28] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Kawabata T, Tamura T, Izumi O 1993 Metal. Trans. A 24 141
[30] Nye J F 1985 Physical Properties of Crystal Their Representation by Tensors and Matrices (Oxford:Oxford University Press) pp140-141
[31] Hill R 1952 Proc. Phys. Soc. 65 349
[32] Pugh S F 1954 Phios. Mag. 45 823
[33] Gao F M 2017 Sci. Rep. 7 40276
[34] Lin X L, Chen Z P, Pan F C, Chen H M 2016 J. Ningxia University (Natural Science Edition) 37 332 (in Chinese)[林雪玲, 陈治鹏, 潘凤春, 陈焕铭 2016 宁夏大学学报(自然科学版) 37 332]
计量
- 文章访问数: 7540
- PDF下载量: 224
- 被引次数: 0