搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面张力对疏水微结构表面减阻的影响

宋保维 任峰 胡海豹 郭云鹤

引用本文:
Citation:

表面张力对疏水微结构表面减阻的影响

宋保维, 任峰, 胡海豹, 郭云鹤

Drag reduction on micro-structured hydrophobic surfaces due to surface tension effect

Song Bao-Wei, Ren Feng, Hu Hai-Bao, Guo Yun-He
PDF
导出引用
  • 通过构造具有棋盘状微结构的疏水表面,考虑表面张力的影响,利用定常与非定常结合的数值模拟方法,研究了疏水表面在湍流状态下的减阻特性以及微结构内气体封存的效果,其中Re=3000–30000. 在低雷诺数下,疏水表面微结构内气体封存状态良好,减阻率最高约为30%;随着雷诺数的增大,压差阻力增大,减阻率有下降趋势. 当来流速度过大时,水会大量进入微结构,疏水表面的减阻率变化剧烈,且已经不再减阻. 结果表明,表面张力削弱了壁面切应力的影响,使得低雷诺数下微结构内气体能够有效封存,进而减小壁面阻力.
    This article studies drag reduction rule and gas restoration and retention of hydrophobic surfaces numerically when taking into consideration the surface tension effect, the microstructure here is chessboard-like and the Reynolds number varies from 3,000 to 30,000. Results show that gas restoration and retention keep well, and a maximum drag reduction rate of approximately 30% has been gained at small Reynolds number(Re<15000). When Re is too large, water will swarm into microstructures, and keeping a good gas-liquid interface becomes difficult. Meanwhile, drag reduction rate remains variable and hydrophobic surfaces do not reduce drag. Through mechanical analysis we find that the influence of shear stress is weakened due to surface tension effect, thus the gas in microstructures can be effectively stored at low flow speed and drag is reduced.
    • 基金项目: 国家自然科学基金(批准号:51109178)资助的课题.
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 51109178).
    [1]

    Bharat B Yong C J 2011 Progress in Materials Science 56 1

    [2]

    Jonathan P R 2010 Annual Review of Fluid Mechanics 42 89

    [3]

    Wang B Nian J Y, Tie L, Zhang Y B, Guo Z G 2013 Acta Phys. Sin. 62 146801 (in Chinese) [王奔, 念敬妍, 铁璐, 张亚斌, 郭志光 2013 62 146801]

    [4]

    Cassie A B D 1948 Transactions of the Faraday Soc 44 11

    [5]

    Song B W, Guo Y H, Luo Z Z, Xu X H, Wang Y 2013 Acta Phys. Sin. 62 154701 (in Chinese) [宋保维, 郭云鹤, 罗莊竹, 徐向辉, 王鹰 2013 62 154701]

    [6]

    Kevin J, Daniel M, Brent W W 2010 International Journal of Heat and Mass Transfer 53 786

    [7]

    Michael B M, Jonathan P R, J. Blair P 2007 Phys. Fluids 19 065102

    [8]

    Liu Z Y 2011 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University (in Chinese) [刘占一 2007 博士学位论文 (西安: 西北工业大学2011)]

    [9]

    Christophe Y, Catherine B, Cé cile C-B, Pierre J, Lydé ric B 2007 Phys. Fluids 19 123601

    [10]

    Albadawi A, Donoghue D B, Robinson A J, Murray D B, Delauré Y M 2013 International Journal of Multiphase Flow 53 11

    [11]

    Albadawi A, Donoghue D B, Robinson A J, Murray D B, Delauré Y M 2013 Chemical Engineering Science 90 77

    [12]

    Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明 2013 59 178]

    [13]

    Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954 (in Chinese) [常建忠, 刘谋斌, 刘汉涛 2008 57 3954]

    [14]

    Yao W J, Wang N 2009 Acta Phys. Sin. 58 4053 (in Chinese) [姚文静, 王楠 2009 58 4053]

    [15]

    Ole M B, Per-Age K, Alireza A, Helga I A 2005 Phys. Fluids 17 065101

    [16]

    Neelesh A P 2003 Langmuir 19 1249

    [17]

    Steven B P 2000 Turbulent Flows (Cambridge: Cambridge University Press) p7

    [18]

    Brackbill J U, Kothe D B, C. Zemach 1992 J. Comput. Phys. 100 335

    [19]

    Nishino T, Meguro M, Nakamae K, Matsushita M, Uedo Y 1999 Langmuir 15 4321

    [20]

    Richard T Andrea M, Peter V, Frank V S C, Jeffrey B 2006 Physical Review Letters 97 044504

    [21]

    Antonino F Said E 2004 J. Fluid Mech. 503 345

  • [1]

    Bharat B Yong C J 2011 Progress in Materials Science 56 1

    [2]

    Jonathan P R 2010 Annual Review of Fluid Mechanics 42 89

    [3]

    Wang B Nian J Y, Tie L, Zhang Y B, Guo Z G 2013 Acta Phys. Sin. 62 146801 (in Chinese) [王奔, 念敬妍, 铁璐, 张亚斌, 郭志光 2013 62 146801]

    [4]

    Cassie A B D 1948 Transactions of the Faraday Soc 44 11

    [5]

    Song B W, Guo Y H, Luo Z Z, Xu X H, Wang Y 2013 Acta Phys. Sin. 62 154701 (in Chinese) [宋保维, 郭云鹤, 罗莊竹, 徐向辉, 王鹰 2013 62 154701]

    [6]

    Kevin J, Daniel M, Brent W W 2010 International Journal of Heat and Mass Transfer 53 786

    [7]

    Michael B M, Jonathan P R, J. Blair P 2007 Phys. Fluids 19 065102

    [8]

    Liu Z Y 2011 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University (in Chinese) [刘占一 2007 博士学位论文 (西安: 西北工业大学2011)]

    [9]

    Christophe Y, Catherine B, Cé cile C-B, Pierre J, Lydé ric B 2007 Phys. Fluids 19 123601

    [10]

    Albadawi A, Donoghue D B, Robinson A J, Murray D B, Delauré Y M 2013 International Journal of Multiphase Flow 53 11

    [11]

    Albadawi A, Donoghue D B, Robinson A J, Murray D B, Delauré Y M 2013 Chemical Engineering Science 90 77

    [12]

    Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明 2013 59 178]

    [13]

    Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954 (in Chinese) [常建忠, 刘谋斌, 刘汉涛 2008 57 3954]

    [14]

    Yao W J, Wang N 2009 Acta Phys. Sin. 58 4053 (in Chinese) [姚文静, 王楠 2009 58 4053]

    [15]

    Ole M B, Per-Age K, Alireza A, Helga I A 2005 Phys. Fluids 17 065101

    [16]

    Neelesh A P 2003 Langmuir 19 1249

    [17]

    Steven B P 2000 Turbulent Flows (Cambridge: Cambridge University Press) p7

    [18]

    Brackbill J U, Kothe D B, C. Zemach 1992 J. Comput. Phys. 100 335

    [19]

    Nishino T, Meguro M, Nakamae K, Matsushita M, Uedo Y 1999 Langmuir 15 4321

    [20]

    Richard T Andrea M, Peter V, Frank V S C, Jeffrey B 2006 Physical Review Letters 97 044504

    [21]

    Antonino F Said E 2004 J. Fluid Mech. 503 345

  • [1] 张超, 布龙祥, 张智超, 樊朝霞, 凡凤仙. 丁二酸-水纳米气溶胶液滴表面张力的分子动力学研究.  , 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [2] 黄皓伟, 梁宏, 徐江荣. 表面张力对高雷诺数Rayleigh-Taylor不稳定性后期增长的影响.  , 2021, 70(11): 114701. doi: 10.7498/aps.70.20201960
    [3] 周浩, 李毅, 刘海, 陈鸿, 任磊生. 最优输运无网格方法及其在液滴表面张力效应模拟中的应用.  , 2021, 70(24): 240203. doi: 10.7498/aps.70.20211078
    [4] 张旋, 张天赐, 葛际江, 蒋平, 张贵才. 表面活性剂对气-液界面纳米颗粒吸附规律的影响.  , 2020, 69(2): 026801. doi: 10.7498/aps.69.20190756
    [5] 沈婉萍, 尤仕佳, 毛鸿. 夸克介子模型的相图和表面张力.  , 2019, 68(18): 181101. doi: 10.7498/aps.68.20190798
    [6] 许少锋, 楼应侯, 吴尧锋, 王向垟, 何平. 微通道疏水表面滑移的耗散粒子动力学研究.  , 2019, 68(10): 104701. doi: 10.7498/aps.68.20182002
    [7] 艾旭鹏, 倪宝玉. 流体黏性及表面张力对气泡运动特性的影响.  , 2017, 66(23): 234702. doi: 10.7498/aps.66.234702
    [8] 管新蕾, 王维, 姜楠. 高聚物减阻溶液对壁湍流输运过程的影响.  , 2015, 64(9): 094703. doi: 10.7498/aps.64.094703
    [9] 喻晓, 沈杰, 钟昊玟, 张洁, 张高龙, 张小富, 颜莎, 乐小云. 强脉冲电子束辐照材料表面形貌演化的模拟.  , 2015, 64(21): 216102. doi: 10.7498/aps.64.216102
    [10] 孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟.  , 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [11] 白玲, 李大鸣, 李彦卿, 王志超, 李杨杨. 基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究.  , 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [12] 谷云庆, 牟介刚, 代东顺, 郑水华, 蒋兰芳, 吴登昊, 任芸, 刘福庆. 基于蚯蚓背孔射流的仿生射流表面减阻性能研究.  , 2015, 64(2): 024701. doi: 10.7498/aps.64.024701
    [13] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟.  , 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [14] 李源, 罗喜胜. 黏性、表面张力和磁场对Rayleigh-Taylor不稳定性气泡演化影响的理论分析.  , 2014, 63(8): 085203. doi: 10.7498/aps.63.085203
    [15] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟.  , 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [16] 强洪夫, 石超, 陈福振, 韩亚伟. 基于大密度差多相流SPH方法的二维液滴碰撞数值模拟.  , 2013, 62(21): 214701. doi: 10.7498/aps.62.214701
    [17] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究.  , 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [18] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究.  , 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [19] 刘秀梅, 贺杰, 陆建, 倪晓武. 表面张力对固壁旁空泡运动特性影响的理论和实验研究.  , 2009, 58(6): 4020-4025. doi: 10.7498/aps.58.4020
    [20] 张蜡宝, 代富平, 熊予莹, 魏炳波. 深过冷Ni-15%Sn合金熔体表面张力研究.  , 2006, 55(1): 419-423. doi: 10.7498/aps.55.419
计量
  • 文章访问数:  7412
  • PDF下载量:  744
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-26
  • 修回日期:  2013-11-06
  • 刊出日期:  2014-03-05

/

返回文章
返回
Baidu
map