-
Although high-speed vehicles are designed to be smooth, they tend to have some protuberances on their surfaces. Thus the aerodynamic characteristics and thermal loads are changed. Meanwhile, mounting protuberances on a flat plate is an important way of flow control, and appropriate structure and location of the protuberance can improve the performance of the scramjet inlet remarkably. The nanotracer planar laser scattering (NPLS) technique is used to test the flow field of Mach 3.0 supersonic flow over circular protuberances of different heights. In total three models are tested. And the second-order scheme and fifth-order weighted compact nonlinear scheme (WCNS-E-5) is adopted to simulate the flow field. Fine structures of supersonic flow over the circular protubernaces have been obtained and the development of boundary layer in the wake flow can be observed. By comparison, it may be concluded that the protuberance lower than the local thickness will have weak disburances on its boundary layer development, and the layer after reattachment can keep its laminar state within a long distance. During the transition many clear hairpin vortices can be distinguished. When the protuberance height is larger than the thickness of the boundary layer, and the later in the region of wake flow would develop into a turbulence quickly due to intense disturbances. The transition point observed from the experimental results lies closer to the protuberance, and this might be cansed by the noise from the walls of the wind tunnel. Intermittency analysis has been done for the boundary layer in the wake flow based on the NPLS images, and the results show that the intermittency curves of the two protuberances that are larger than the local boundary layer thickness are quite similar and fluctuations are strong.
-
Keywords:
- supersonic flow /
- protuberance mounted on a flat plate /
- NPLS /
- WCNS-E-5
[1] Li S X 2007 Complex flow with the leading of shock wave and boundary layer (Beijing: Science Press) pp11-52 (in Chinese) [李素循2007激波与边界层主导的复杂流动(北京: 科学出版社)第11–52页]
[2] Sedney R 1973 AIAA J. 11 782
[3] Bernardini M, Pirozzoli S, Orlandi P, Lele S K 2014 AIAA J. DOI: 10.2514/1.J052842
[4] Wang D P 2012 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [王登攀 2012 博士学位论文 (湖南长沙: 国防科学技术大学)]
[5] Voitenko D M, Zubkov A I, Panov Y A 1966 Fluid Dyn. 1 121
[6] Burbank P B 1962 NASA TN D-1372
[7] Westkaemper J C 1967 AIAA J. 6 1352
[8] Sedney R, Kitchens C W 1976 AIAA J. 15 546
[9] Ozcan O, Holt M 1984 AIAA J. 22 611
[10] Wheaton B M 2012 Ph. D. Dissertation (West Lafayette: Purdue University)
[11] Wheaton B M, Schneider S P 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, 4-7 January 2010, AIAA 2010-1574
[12] Bartkowicz M D, Subbareddy P K, Candler G V 2010 40th Fluid Dynamics Conference and Exhibit Chicago, Illinois, 28 June-1 July 2010, AIAA 2010-4723
[13] Wang D P, Zhao Y X, Xia Z X, Wang Q H, Luo Z B 2012 Chin. Phys. Lett. 29 084702
[14] White J T 1995 AIAA Paper 95-1789-CP
[15] Manokaran K, Vidya G, Goyal V K 2003 41st Aerospace Sciences Meeting and Exhibit Reno, Nevada, AIAA 2003-1253
[16] Schneider S P 2008 J. Spacecraft Rockets 45 193
[17] Ma H D, Li S X, Chen Y K 2000 Acta Mech. Sin. 32 486 (in Chinese) [马汉东, 李素循, 陈永康 2000 力学学报 32 486]
[18] Pan H L, Li J H, Zhang X J 2013 Chin. J. Comput Phys. 30 825 (in Chinese) [潘宏禄, 李俊红, 张学军 2013 计算物理 30 825]
[19] Deng X G, Zhang H X 2000 J. Comput Phys. 165 22
[20] Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 62 084219 (in Chinese) [武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 62 084219]
[21] Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H Fu J 2013 Acta Phys. Sin. 62 184702 (in Chinese) [朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 2013 62 184702]
[22] Liu X, Deng X G, Mao M L 2007 AIAA J. 45 2093-2097
[23] He L 2011 Ph.D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [何霖 2011 博士学位论文 (长沙: 国防科学技术大学)]
[24] Xu W X, Xu W C 1989 Viscous Fulid Dyn. (Beijing: Press of Beijing Institute of Technology) p481 (in Chinese) [徐文熙, 徐文灿1989 黏性流体力学 (北京: 北京理工大学出版社)第481页]
[25] Humble R A, Peltier S J, Bowersox R D W 2012 Phys. Fluids 24 106103
-
[1] Li S X 2007 Complex flow with the leading of shock wave and boundary layer (Beijing: Science Press) pp11-52 (in Chinese) [李素循2007激波与边界层主导的复杂流动(北京: 科学出版社)第11–52页]
[2] Sedney R 1973 AIAA J. 11 782
[3] Bernardini M, Pirozzoli S, Orlandi P, Lele S K 2014 AIAA J. DOI: 10.2514/1.J052842
[4] Wang D P 2012 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [王登攀 2012 博士学位论文 (湖南长沙: 国防科学技术大学)]
[5] Voitenko D M, Zubkov A I, Panov Y A 1966 Fluid Dyn. 1 121
[6] Burbank P B 1962 NASA TN D-1372
[7] Westkaemper J C 1967 AIAA J. 6 1352
[8] Sedney R, Kitchens C W 1976 AIAA J. 15 546
[9] Ozcan O, Holt M 1984 AIAA J. 22 611
[10] Wheaton B M 2012 Ph. D. Dissertation (West Lafayette: Purdue University)
[11] Wheaton B M, Schneider S P 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, 4-7 January 2010, AIAA 2010-1574
[12] Bartkowicz M D, Subbareddy P K, Candler G V 2010 40th Fluid Dynamics Conference and Exhibit Chicago, Illinois, 28 June-1 July 2010, AIAA 2010-4723
[13] Wang D P, Zhao Y X, Xia Z X, Wang Q H, Luo Z B 2012 Chin. Phys. Lett. 29 084702
[14] White J T 1995 AIAA Paper 95-1789-CP
[15] Manokaran K, Vidya G, Goyal V K 2003 41st Aerospace Sciences Meeting and Exhibit Reno, Nevada, AIAA 2003-1253
[16] Schneider S P 2008 J. Spacecraft Rockets 45 193
[17] Ma H D, Li S X, Chen Y K 2000 Acta Mech. Sin. 32 486 (in Chinese) [马汉东, 李素循, 陈永康 2000 力学学报 32 486]
[18] Pan H L, Li J H, Zhang X J 2013 Chin. J. Comput Phys. 30 825 (in Chinese) [潘宏禄, 李俊红, 张学军 2013 计算物理 30 825]
[19] Deng X G, Zhang H X 2000 J. Comput Phys. 165 22
[20] Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 62 084219 (in Chinese) [武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 62 084219]
[21] Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H Fu J 2013 Acta Phys. Sin. 62 184702 (in Chinese) [朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 2013 62 184702]
[22] Liu X, Deng X G, Mao M L 2007 AIAA J. 45 2093-2097
[23] He L 2011 Ph.D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [何霖 2011 博士学位论文 (长沙: 国防科学技术大学)]
[24] Xu W X, Xu W C 1989 Viscous Fulid Dyn. (Beijing: Press of Beijing Institute of Technology) p481 (in Chinese) [徐文熙, 徐文灿1989 黏性流体力学 (北京: 北京理工大学出版社)第481页]
[25] Humble R A, Peltier S J, Bowersox R D W 2012 Phys. Fluids 24 106103
Catalog
Metrics
- Abstract views: 6406
- PDF Downloads: 412
- Cited By: 0