Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Highly-efficient optical storage of two orthogonal polarization modes in a cold atom ensemble

Wen Ya-Fei Wang Sheng-Zhi Xu Zhong-Xiao Li Shu-Jing Wang Hai

Citation:

Highly-efficient optical storage of two orthogonal polarization modes in a cold atom ensemble

Wen Ya-Fei, Wang Sheng-Zhi, Xu Zhong-Xiao, Li Shu-Jing, Wang Hai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Optical quantum memory plays an important role in scaling-up linear optical quantum computations and longdistance quantum communication. For effectively realizing such tasks, a long-lived and highly-efficient quantum memory is needed. The dynamic electromagnetically-induced-transparency (EIT) process can be used for completing an absorptive storage scheme in an atomic ensemble. In such a process, the quantum states of coming single photons can be coherently transformed into spin waves associated with coherences between atomic ground levels via switching off controlling light beam. For storing a single-mode optical signal, a pair of ground levels is involved. While for storing an optical polarization qubit, i.e., two orthogonal polarization modes, the coherence between two pairs of ground levels will be involved. Also, to obtain a high efficiency in the EIT optical storage, the optical-depth of the cold ensemble should be high. For prolonging the coherent time of the spin waves stored in atomic ensemble, decoherence between spin waves due to atomic motion and non-uniform Zeeman shift of ground levels should be effectively suppressed. Recently, a long-lived and highly-efficient optical quantum memory for single-mode storage in a high-optical-depth cold atom ensemble has been experimentally demonstrated via the gradient echo memory scheme (2016 Optical 3 100). While, for the optical polarization qubit storage, a long lifetime (in ms) and high-fidelity EIT storage experiment has been achieved by our group, but the storage efficiency in the experiment is very low (8%) due to lower optical depth of the cold ensemble (2013 Phys. Rev. Lett. 111 240503). The storage efficiency in long-lived storage of two orthogonal polarization modes still needs further improving. Here in this paper we demonstrate an experiment of long-lived and highly-efficient storage of two optical orthogonal polarization modes in a high optical-depth cold atomic ensemble via dynamic EIT process. For achieving a long lifetime in the storage experiment, we follow the two steps, which are used in our previous work (2013 Phys. Rev. Lett. 111 240503). 1) We make the signal and writing-reading light beams collinearly pass through the cold-atom cloud along the z direction to suppress the decoherence between the spin waves due to atomic motion. 2) We apply a moderate magnetic field (13.5 G) to the cold-atom ensemble to lift Zeeman degeneracy. So, the magnetic-field-sensitive transitions are removed from EIT system and the two optical orthogonal polarization modes are stored as two magnetic-field-insensitive spin waves. In contrast to our previous experiment, we finish the storage in the high optical-depth cold atomic ensemble. To obtain such a high optical-depth cold atomic ensemble, we expand the diameters of the trapping laser beams and use a pair of rectangular magnetic coils in a magnetic optical trap (MOT) to prepare a cigar-shaped cold atomic ensemble. The MOT magnetic field is further compressed, and then the optical-depth of the cold atomic ensemble increases up to ~11 in the present experiment, which allows us to achieve a storage efficiency of 30%, which exceeds the previous value (8%). At an MOT repetition rate of 10 Hz, the measured zero-delay storage efficiencies for the two orthogonal polarization modes are symmetric, which go up to ~30%. The 1/e-folding lifetimes of the two orthogonal polarization modes rise up to 3 ms. We also measure the dependence of the zero-delay retrieval efficiency on the MOT repetition rate F and find that the storage efficiency is still more than 20% when the repetition rate F is 50 Hz. The present results will allow one to achieve a long lifetime and highly-efficient quantum memory for photonic polarization qubit and then find applications in scaling-up linear-optical quantum computations and long-distance quantum communication.
      Corresponding author: Xu Zhong-Xiao, xuzhongxiao@sxu.edu.cn
    • Funds: Project supported by Key Project of the Ministry of Science and Technology of China (Grant No. 2016YFA0301402), the National Natural Science Foundation of China (Grant Nos. 11475109, 11274211), The Young Science Fund of the National Nature Science Foundation of China (Grant No. 11604191), the Applied Basic Research Program of Shanxi Province, China (Grant No. 201601D202007), the Fund for Shanxi 1331 Project Key Subjects Construction, China (Grant No. 1331KSC).
    [1]

    Fanchini F F, Hornos J E M, Napolitano R D J 2007 Phys. Rev.. 75 022329

    [2]

    Sangouard N, Simon C, Min J, Zbinden H, de Riedmatten H, Gisin N 2007 Phys. Rev.. 76 050301

    [3]

    Sangouard N, Simon C, Zhao B, Chen Y A, de Riedmatten H, Pan J W, Gisin N 2008 Phys. Rev.. 77 062301

    [4]

    Briegel H J, Dr W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [5]

    Jia X J, Su X L, Pan Q, Xie C D, Peng K C 2005 Acta Phys. Sin. 54 1262(in Chinese) [贾晓军, 苏晓龙, 潘庆, 谢常德, 彭堃墀 2005 54 1262]

    [6]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517

    [7]

    Zhang S, Chen J F, Liu C, Zhou S, Loy M M, Wong G K, Du S 2012 Rev. Sci. Instrum 83 073102

    [8]

    Zhang Z Y, Wu Y L, Xu Z X, Chen L R, Li S J, Wang H 2013 Acta Sin. Quan. Opt. 19 340(in Chinese) [张志英, 武跃龙, 徐忠孝, 陈力荣, 李淑静, 王海 2013 量子光学学报 19 340]

    [9]

    Novikova I, Phillips N B, Gorshkov A V 2008 Phys. Rev.. 78 021802

    [10]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501

    [11]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517

    [12]

    Xu Z X, Chen L Z, Li P, Wen Y F, Wang H 2015 Acta Sin. Quan. Opt. 21 113(in Chinese) [徐忠孝, 陈力荣, 李萍, 温亚飞, 王海 2015 量子光学学报 21 113]

    [13]

    Xu Z X, Wu Y L, Tian L, Chen L R, Zhang Z Y, Yan Z H, Li S J, Wang H, Xie C D, Peng K C 2013 Phys. Rev. Lett. 111 240503

    [14]

    Schnorrberger U, Thompson J D, Trotzky S, Pugatch R, Davidson N, Kuhr S 2009 Phys. Rev. Lett. 103 033003

    [15]

    Liu Z D, Wu Q 2004 Acta Phys. Sin. 53 2970(in Chinese) [刘正东, 武强 2004 53 2970]

    [16]

    Sangouard N, Simon C, Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33

    [17]

    Wang B, Li S J, Chang H, Wu H B, Xie C D, Wang H 2005 Acta Phys. Sin. 54 4136(in Chinese) [王波, 李淑静, 常宏, 武海斌, 谢长德, 王海 2005 54 4136]

    [18]

    Bian C L, Zhu J, Lu J W, Yan J L, Wang Z B, Qu Z Y, Zhang W P 2013 Acta Phys. Sin. 62 174207(in Chinese) [边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平 2013 62 174207]

    [19]

    Zhang S C, Zhou S Y, Loy M M T, Wong G K L, Du S W 2011 Opt. Lett. 36 23

    [20]

    Chen Y H, Lee M J, Wang I C, Du S, Chen Y F, Chen Y C, Yu I A 2013 Phys. Rev. Lett. 110 083601

    [21]

    Cho Y W, Campbell G T, Everett J L, Bernu J, Higginbottom D B, Cao M T, Geng J, Robins N P, Lam P K, Buchler B C 2016 Optica 3 100

    [22]

    Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2009 Nature Phys. 5 95

    [23]

    Gibble K E, Kasapi S, Chu S 1992 Opt. Lett. 17 526

    [24]

    Joshi A, Xiao M 2005 Phys. Rev.. 71 041801

    [25]

    Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094

    [26]

    Wang H, Li S J, Xu Z X, Zhao X B, Zhang L J, Li J H, Wu Y L, Xie C D, Peng K C, Xiao M 2011 Phys. Rev.. 83 043815

    [27]

    Zhao R, Dudin Y O, Jenkins S D, Campbell C J, Matsukevich D N, Kennedy A B 2008 Nature Phys. 5 100

  • [1]

    Fanchini F F, Hornos J E M, Napolitano R D J 2007 Phys. Rev.. 75 022329

    [2]

    Sangouard N, Simon C, Min J, Zbinden H, de Riedmatten H, Gisin N 2007 Phys. Rev.. 76 050301

    [3]

    Sangouard N, Simon C, Zhao B, Chen Y A, de Riedmatten H, Pan J W, Gisin N 2008 Phys. Rev.. 77 062301

    [4]

    Briegel H J, Dr W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [5]

    Jia X J, Su X L, Pan Q, Xie C D, Peng K C 2005 Acta Phys. Sin. 54 1262(in Chinese) [贾晓军, 苏晓龙, 潘庆, 谢常德, 彭堃墀 2005 54 1262]

    [6]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517

    [7]

    Zhang S, Chen J F, Liu C, Zhou S, Loy M M, Wong G K, Du S 2012 Rev. Sci. Instrum 83 073102

    [8]

    Zhang Z Y, Wu Y L, Xu Z X, Chen L R, Li S J, Wang H 2013 Acta Sin. Quan. Opt. 19 340(in Chinese) [张志英, 武跃龙, 徐忠孝, 陈力荣, 李淑静, 王海 2013 量子光学学报 19 340]

    [9]

    Novikova I, Phillips N B, Gorshkov A V 2008 Phys. Rev.. 78 021802

    [10]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501

    [11]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517

    [12]

    Xu Z X, Chen L Z, Li P, Wen Y F, Wang H 2015 Acta Sin. Quan. Opt. 21 113(in Chinese) [徐忠孝, 陈力荣, 李萍, 温亚飞, 王海 2015 量子光学学报 21 113]

    [13]

    Xu Z X, Wu Y L, Tian L, Chen L R, Zhang Z Y, Yan Z H, Li S J, Wang H, Xie C D, Peng K C 2013 Phys. Rev. Lett. 111 240503

    [14]

    Schnorrberger U, Thompson J D, Trotzky S, Pugatch R, Davidson N, Kuhr S 2009 Phys. Rev. Lett. 103 033003

    [15]

    Liu Z D, Wu Q 2004 Acta Phys. Sin. 53 2970(in Chinese) [刘正东, 武强 2004 53 2970]

    [16]

    Sangouard N, Simon C, Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33

    [17]

    Wang B, Li S J, Chang H, Wu H B, Xie C D, Wang H 2005 Acta Phys. Sin. 54 4136(in Chinese) [王波, 李淑静, 常宏, 武海斌, 谢长德, 王海 2005 54 4136]

    [18]

    Bian C L, Zhu J, Lu J W, Yan J L, Wang Z B, Qu Z Y, Zhang W P 2013 Acta Phys. Sin. 62 174207(in Chinese) [边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平 2013 62 174207]

    [19]

    Zhang S C, Zhou S Y, Loy M M T, Wong G K L, Du S W 2011 Opt. Lett. 36 23

    [20]

    Chen Y H, Lee M J, Wang I C, Du S, Chen Y F, Chen Y C, Yu I A 2013 Phys. Rev. Lett. 110 083601

    [21]

    Cho Y W, Campbell G T, Everett J L, Bernu J, Higginbottom D B, Cao M T, Geng J, Robins N P, Lam P K, Buchler B C 2016 Optica 3 100

    [22]

    Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2009 Nature Phys. 5 95

    [23]

    Gibble K E, Kasapi S, Chu S 1992 Opt. Lett. 17 526

    [24]

    Joshi A, Xiao M 2005 Phys. Rev.. 71 041801

    [25]

    Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094

    [26]

    Wang H, Li S J, Xu Z X, Zhao X B, Zhang L J, Li J H, Wu Y L, Xie C D, Peng K C, Xiao M 2011 Phys. Rev.. 83 043815

    [27]

    Zhao R, Dudin Y O, Jenkins S D, Campbell C J, Matsukevich D N, Kennedy A B 2008 Nature Phys. 5 100

  • [1] Xia Gang, Zhang Ya-Peng, Tang Jing-Wen, Li Chun-Yan, Wu Chun-Wang, Zhang Jie, Zhou Yan-Li. Metastable dynamics of Rydberg atomic system under electromagnetically induced transparency. Acta Physica Sinica, 2024, 73(10): 104203. doi: 10.7498/aps.73.20240233
    [2] Wang Jiang-Qiong, Li Wei-Kang, Zhang Wen-Ye, Wan Bao-Quan, Zha Jun-Wei. Aging and life control of cross-linked polyethylene as cable insulation material. Acta Physica Sinica, 2024, 73(7): 078801. doi: 10.7498/aps.73.20240201
    [3] Wen Ya-Fei, Zhuang Yuan-Yuan, Wang Zhi-Qiang, Gao Shi-Hui. Experimental study of efficient temporal-multimode Duan-Lukin-Cirac-Zoller storage scheme. Acta Physica Sinica, 2024, 73(18): 180301. doi: 10.7498/aps.73.20240799
    [4] Zhou Fei, Jia Feng-Dong, Liu Xiu-Bin, Zhang Jian, Xie Feng, Zhong Zhi-Ping. Measurement of microwave electric field based on electromagnetically induced transparency by using cold Rydberg atoms. Acta Physica Sinica, 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [5] Pei Li-Ya, Zheng Shi-Yang, Niu Jin-Yan. Λ-type electromagnetically induced transparency and absorption by controlling atomic coherence. Acta Physica Sinica, 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [6] Yang De-Wen, Chen Chang-Hua, Shi Yan-Chao, Xiao Ren-Zhen, Teng Yan, Fan Zhi-Qiang, Liu Wen-Yuan, Song Zhi-Min, Sun Jun. Investigation of an X band high efficiency klystron-like relativistic backward wave oscillator. Acta Physica Sinica, 2020, 69(16): 164102. doi: 10.7498/aps.69.20200434
    [7] Yan Dong, Wang Bin-Bin, Bai Wen-Jie, Liu Bing, Du Xiu-Guo, Ren Chun-Nian. Phase in Rydberg electromagnetically induced transparency. Acta Physica Sinica, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [8] Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang. Electromagnetically induced transparency of a cesium Rydberg atom in weak radio-frequency field. Acta Physica Sinica, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [9] Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang. Electromagnetically induced transparency of Rydberg atoms in modulated laser fields. Acta Physica Sinica, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [10] Bai Jin-Hai, Lu Xiao-Gang, Miao Xing-Xu, Pei Li-Ya, Wang Meng, Gao Yan-Lei, Wang Ru-Quan, Wu Ling-An, Fu Pan-Ming, Zuo Zhan-Chun. Analysis on the absorption curve asymmetry of electromagnetically induced transparency in Rb87 cold atoms. Acta Physica Sinica, 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [11] Wang Meng, Bai Jin-Hai, Pei Li-Ya, Lu Xiao-Gang, Gao Yan-Lei, Wang Ru-Quan, Wu Ling-An, Yang Shi-Ping, Pang Zhao-Guang, Fu Pan-Ming, Zuo Zhan-Chun. Electromagnetically induced transparency in a near-resonance coupling field. Acta Physica Sinica, 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [12] Guo Jing, He Guang-Yuan, Jiao Zhong-Xing, Wang Biao. High-efficiency intracavity 2 μm degenerate optical parametric oscillator. Acta Physica Sinica, 2015, 64(8): 084207. doi: 10.7498/aps.64.084207
    [13] Zhao Hu, Li Tie-Fu, Liu Jian-She, Chen Wei. Progress of electromagnetically induced transparency based on superconducting qubits. Acta Physica Sinica, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [14] She Yan-Chao, Zhang Wei-Xi, Wang Deng-Long. Nonlinear Faraday rotation in electromagnetically induce transparency medium. Acta Physica Sinica, 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [15] She Yan-Chao, Wang Deng-Long, Ding Jian-Wen. Spatial weak-light ring dark solitons in an electromagnetically induced transparency medium. Acta Physica Sinica, 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [16] Zhuang Fei, Shen Jian-Qi, Ye Jun. Controlling the photonic bandgap structures via manipulation of refractive index of electromagnetically induced transparency vapor. Acta Physica Sinica, 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [17] Yao Ming, Zhu Ka-Di, Yuan Xiao-Zhong, Jiang Yi-Wen, Wu Zhuo-Jie. Phonon mediated electromagnetically induced transparency and ultraslow light in strongly coupled exciton-phonon systems. Acta Physica Sinica, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [18] Liu Zheng-Dong, Wu Qiang. Electromagnetically induced transparency in a four-level atomic system driven by three coupled fields. Acta Physica Sinica, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [19] Zhao Jian-Ming, Zhao Yan-Ting, Huang Tao, Xiao Lian-Tuan, Jia Suo-Tang. Experimental investigation of electromagnetically induced transparency with double-pumping lasers. Acta Physica Sinica, 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
    [20] Li Yong-Fang, Sun Jian-Feng. Ultra-narrow electromagnetically induced transparency and inversionless gain in a ladder-four-level system. Acta Physica Sinica, 2003, 52(3): 547-555. doi: 10.7498/aps.52.547
Metrics
  • Abstract views:  6378
  • PDF Downloads:  139
  • Cited By: 0
Publishing process
  • Received Date:  27 May 2017
  • Accepted Date:  10 October 2017
  • Published Online:  05 January 2018

/

返回文章
返回
Baidu
map