-
Quantum interfaces that generate entanglement or correlations between a photon and an atomic memory are fundamental building blocks in quantum repeater research. Temporal, spatial, and spectral multiplexed atom-photon entanglement interfaces in cold atomic systems based on spontaneous Raman scattering processes, offer an effective technical approach to realizing quantum repeaters. Compared with the other schemes, temporal-multiplexing schemes are particularly attractive since they repeatedly use the same physical process. In these schemes, readout efficiency plays a crucial role. Theoretical models indicate that even a 1% increase in readout efficiency can lead to a 7%-18% improvement in the probability of a long-distance entanglement distribution. However, current temporal-multimode quantum memory implementations often suffer from low readout efficiencies unless optical cavities or large optical-depth atomic ensembles are employed.
In this study, we address this challenge by employing expandable pulsed light fabrication technology and carefully selecting energy level transitions to develop a high-efficiency temporal-multiplexed quantum source. Our approach involves applying a train of write laser pulses to an atomic ensemble from different directions, thereby creating spin-wave memories and Stokes-photon emissions. We designed an expandable pulsed light fabrication device based on the principle of optical path reversibility, allowing a writing laser beam to pass through an acousto-optic modulator (AOM) network in two different directions. This setup enables precise control over the directions of the write pulse train through real-time manipulation of the field-programmable gate array (FPGA) and the diffraction order of the AOMs. In our experiment, we prepared six mode pairs. Upon detection of a Stokes photon during the experimental cycle, the FPGA outputs a feedforward signal after a designated storage time, triggering the application of a corresponding reading pulse from the read AOM network to the atomic ensemble, thereby generating an anti-Stokes photon. To enhance readout efficiency, we optimized the energy level structure of the read pulse transitions, $\left|b \rightarrow e_2\right\rangle$ to $\left|b \rightarrow e_1\right\rangle$; specifically, we adjusted the transition frequencies of the read pulses compared with those used in current temporal-multimode quantum memory schemes. Theoretical calculations showed that when the frequencies of the read pulses are tuned to the transitions $\left|b \rightarrow e_1\right\rangle$ and $\left|b \rightarrow e_2\right\rangle$, the readout efficiencies are about 33% and 15%, suggesting that the chosen energy level transitions could double the readout efficiency.
Experimental results demonstrated a readout efficiency of 38% for the multiplexed source and the Bell parameter of 2.35. Additionally, our setup achieved a 5.83-fold increase in the probability of successful entanglement generation compared to a single channel entanglement source. Our method is cost-effective, easy to operate, and highly applicable. For instance, based on our findings, further improvements in readout efficiency could be realized through cavity-enhanced atom-photon coupling, and entanglement fidelity could be increased by suppressing noise in temporal-multimode memory schemes. This work provides a solid foundation and effective methods for the realization of high-efficiency temporal-multimode quantum memory and the development of large-scale quantum networks.-
Keywords:
- High efficiency /
- Temporal-multimode memories /
- Energy level transition selection /
- Pulsed light fabrication technology
-
[1] Kimble H J 2008 Nature 453 1023
[2] Simon C 2017 Nat. Photonics 11 678
[3] Sangouard N, Simon C, Minář J, Zbinden H, de. Riedmatten H, Gisin N 2007 Phys. Rev. A 76 050301
[4] Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413
[5] Liao Q, Liu H J, Wang Z, Zhu L J 2023 Acta Phys. Sin. 72 040301 (in Chinese)[廖骎, 柳海杰, 王铮, 朱凌瑾 2023 72 040301]
[6] Zheng Q L, Liu J C, Wu C, Xue S C, Zhu P Y, Wang Y, Yu X Y, Yu M M, Deng M T, Wu J J, Xu P 2022 Chin. Phys. B. 31 024206
[7] Sun Y, Sun C W, Zhou W, Yang R, Duan J C, Gong Y X, Xu P, Zhu S N 2023 Chin. Phys. B. 32 080308
[8] Abruzzo S, Kampermann H, Bruß D 2014 Phys. Rev. A 89 012301
[9] Inagaki T, Matsuda N, Tadanaga O, Asobe M, Takesue H 2013 Opt. Express 21 23241
[10] Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nat. Photonics 9 332
[11] Wu Y L, Tian L, Xu Z X, Ge W, Chen L R, Li S J, Peng K C 2016 Phys. Rev. A 93 052327
[12] Wen Y F, Zhou P, Xu Z, Yuan L, Zhang H, Wang S, Wang H 2019 Phys. Rev. A 100 012342
[13] Liu H L, Wang M J, Jiao H L, Lu J J, Fan W X, Li S J, Wang H 2023 Opt. Express 31 7200
[14] Li Y, Wen Y F, Wang M J, Liu C, Liu H L, Li S J, Wang H 2022 Phy. Rev. A 106 022610
[15] Pu Y F, Jiang N, Chang W, Yang H X, Li C, Duan L M 2017 Nat. Commun. 8 15359
[16] Tian L, Xu Z X, Chen L R, Ge W, Yuan H X, Wen Y F, Wang H 2017 Phys. Rev. Lett. 119 130505
[17] Lipka M, Mazelanik M, Leszczyński A, Wasilewski W, Parniak M 2021 Commun. Phys. 4 46
[18] Krovi H, Guha S, Dutton Z, Slater J A, Simon C, Tittel W 2016 Appl. Phys. B. 52 122
[19] Saglamyurek E, Puigibert M G, Zhou Q, Giner L, Marsili F, Verma V B, Nam S W, Oesterling L, Nippa D, Oblak D, Tittel W 2016 Nat. Commun. 7 11202
[20] Albrecht B, Farrera P, Heinze G, Cristiani M, de Riedmatten H 2015 Phys. Rev. Lett. 115 160501
[21] Farrera P, Heinze G, de Riedmatten H 2018 Phys. Rev. Lett. 120 100501
[22] Heller L, Farrera P, Heinze G, de Riedmatten H 2020 Phys. Rev. Lett. 124 210504
[23] Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33
[24] Jiang L, Taylor J M, Lukin M D 2007 Phys. Rev. A 76 012301
[25] Wen Y F, Tian J F, Wang Z Q, Zhuang Y Y 2023 Acta Phys. Sin. 72 060301 (in Chinese)[温亚飞, 田剑锋, 王志强, 庄园园 2023 72 060301]
[26] Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501
[27] Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517
[28] Simon C, de Riedmatten H, Afzelius M 2010 Phys. Rev. A 82 010304
[29] Cho Y W, Campbell G T, Everett J L, Bernu J, Higginbottom D B, Cao M T, Geng J, Robins N P, Lam P K, Buchler B C 2016 Optica. 3 100
[30] Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2009 Nat Phys. 5 95
[31] Zhou P, Wen Y F, Yuan L, Li Y, Li S J, Wang H 2020 Acta Sin. Quan. Opt. 26 6 (in Chinese) [周湃, 温亚飞, 袁亮, 李雅, 李淑静, 王海 2020 量子光学学报 26 6]
计量
- 文章访问数: 66
- PDF下载量: 2
- 被引次数: 0