搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电缆绝缘材料交联聚乙烯的老化及寿命调控

王江琼 李维康 张文业 万宝全 查俊伟

引用本文:
Citation:

电缆绝缘材料交联聚乙烯的老化及寿命调控

王江琼, 李维康, 张文业, 万宝全, 查俊伟

Aging and life control of cross-linked polyethylene as cable insulation material

Wang Jiang-Qiong, Li Wei-Kang, Zhang Wen-Ye, Wan Bao-Quan, Zha Jun-Wei
PDF
HTML
导出引用
  • 交联聚乙烯(cross-linked polyethylene, XLPE)因其优异的力学性能和绝缘性能广泛应用于电力电缆领域中, 但在高压电缆的运行过程中XLPE不可避免会受到电老化、热老化和电-热联合老化的影响, 使得材料的性能和寿命下降, 因此需要对XLPE的老化性能和使用寿命进行调控. 本文介绍了XLPE的结构特性和交联机理, 系统分析了其老化过程及影响机制, 并概述了接枝、共混和纳米粒子改性等调控策略, 同时基于寿命评估模型探究了XLPE因老化而导致的寿命衰减问题. 最后, 展望了调控XLPE电缆绝缘材料使用寿命策略的未来方向, 为XLPE电缆绝缘材料的进一步改进和长期稳定运行提供理论指导.
    Cross-linked polyethylene (XLPE) has been widely used in the field of power cables due to its excellent mechanical properties and insulating properties. However, during the manufacturing of high voltage cables, XLPE will inevitably be affected by electrical aging, thermal aging and electro-thermal combined aging, which makes the resistance and life of the material decline. Therefore, it is necessary to enhance the aging resistance of XLPE without affecting its mechanical properties and insulating properties, so as to extend its service life. In this work, the structural characteristics and cross-linking mechanism of XLPE are introduced, the aging process and influencing mechanism are systematically analyzed, and the life decay problems of XLPE due to aging are explored by using methods such as the temperature Arrhenius equation and the inverse power law of voltage. The improvement strategies such as grafting, blending, and nanoparticle modification can be used to enhance the thermal stability, antioxidant properties, and thermal aging resistance of XLPE, thereby extending its service life. Finally, the strategies of adjusting and controlling the service life of XLPE cable insulation materials in the future are discussed, which provide theoretical guidance for further improving long-term stable operation of XLPE cable insulation materials.
      通信作者: 李维康, li_weikang@sina.cn ; 查俊伟, zhajw@ustb.edu.cn
    • 基金项目: 广东省基础与应用基础研究基金(批准号: 2022A1515240005)资助的课题.
      Corresponding author: Li Wei-Kang, li_weikang@sina.cn ; Zha Jun-Wei, zhajw@ustb.edu.cn
    • Funds: Project supported by the Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2022A1515240005).
    [1]

    Pourrahimi A M, Kumara S, Palmieri F, Yu L Y, Lund A, Hammarström T, Hagstrand P O, Scheblykin I, Fabiani D, Xu X D, Müller C 2021 Adv. Mater. 33 e2100714Google Scholar

    [2]

    Chen G, Hao M, Xu Z Q, Alun V, Cao J Z, Wang H T 2015 CSEE J. Power Energy Syst. 1 9Google Scholar

    [3]

    张翀, 查俊伟, 王思蛟, 巫运辉, 闫轰达, 李维康, 陈新, 党智敏 2016 绝缘材料 49 1Google Scholar

    Zhang C, Zha J W, Wang S J, Wu Y H, Yan H D, Li W K, Chen X, Dang Z M 2016 Insul. Mater. 49 1Google Scholar

    [4]

    郑元浩 2022 硕士学位论文(青岛: 青岛科技大学)

    Zheng Y H 2022 M. S. Thesis (Qingdao: Qingdao University Science & Technology

    [5]

    D’Auria S, Pourrahimi A M, Favero A, Neuteboom P, Xu X D, Haraguchi S, Bek M, Kádár R, Dalcanale E, Pinalli R, Müller C, Vachon J 2023 Adv. Funct. Mater. 33 2301878Google Scholar

    [6]

    Wang S J, Zha J W, Wu Y H, Ren L, Dang Z M, Wu J 2015 IEEE Trans. Dielectr. Electr. Insul. 22 3350Google Scholar

    [7]

    Wang S J, Zha J W, Li W K, Dang Z M 2016 Appl. Phys. Lett. 108 092902Google Scholar

    [8]

    Wang S J, Zha J W, Li W K, Zhang D L, Dang Z M 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1365Google Scholar

    [9]

    张雅茹, 邵清, 李娟, 袁浩, 李琦, 何金良 2022 石油化工 51 587Google Scholar

    Zhang Y R, Shao Q, Li J, Yuan H, Li Q, He J L 2022 Petrochem. Technol. 51 587Google Scholar

    [10]

    俞葆青, 夏兵, 杨晓砚, 万宝全, 查俊伟 2023 72 068402Google Scholar

    Yu B Q, Xia B, Yang X Y, Wan B Q, Zha J W 2023 Acta Phys. Sin. 72 068402Google Scholar

    [11]

    Zha J W, Yan H D, Li W K, Dang Z M 2018 IEEE Trans. Dielectr. Electr. Insul. 25 1088Google Scholar

    [12]

    Zhang Y Y, Gu G F, Liu J F, Jiang F Y, Fan Y F, Zha J W 2022 Front. Mater. 9 838792Google Scholar

    [13]

    Li H, Li J Y, Li W W, Zhao X T, Wang G L, Alim M A 2013 J. Mater. Sci. : Mater. Electron. 24 1640Google Scholar

    [14]

    Zha J W, Wu Y H, Wang S J, Wu D H, Yan H D, Dang Z M 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2337Google Scholar

    [15]

    Liang C B, Song P, Gu H B, Ma C, Guo Y Q, Zhang H Y, Xu X J, Zhang Q Y, Gu J W 2017 Compos. A: Appl. Sci. Manufact. 102 126Google Scholar

    [16]

    聂永杰, 赵现平, 李盛涛 2019 68 227201Google Scholar

    Nie Y J, Zhao X P, Li S T 2019 Acta Phys. Sin. 68 227201Google Scholar

    [17]

    Zha J W, Qin Q Q, Dang Z M 2019 IEEE Trans. Dielectr. Electr. Insul. 26 868Google Scholar

    [18]

    张成, 李洪飞, 杨延滨, 王卫东, 任成燕, 黄兴溢, 江平开 2020 绝缘材料 53 19Google Scholar

    Zhang C, Li H F, Yang Y B, Wang W D, Ren C Y, Huang X Y, Jiang P K 2020 Insul. Mater. 53 19Google Scholar

    [19]

    Xu N, Zhong L S, Sui R, Ahmed M, Li F, Liu Y B, Gao J H 2022 Macromolecules 55 8186Google Scholar

    [20]

    Green C D, Vaughan A S, Stevens G C, Pye A, Sutton S J, Geussens T, Fairhurst M J 2015 IEEE Trans. Dielectr. Electr. Insul. 22 639Google Scholar

    [21]

    Xing Y Q, Liu J H, Su J G, Zha J W, Li G C, Guo Z, Zhao X Z, Feng M J 2023 High Volt. 1–11Google Scholar

    [22]

    Zhao X D, Sun W F, Zhao H 2019 Polymers 11 592Google Scholar

    [23]

    Liu Y X, Sun J Y, Chen S P, Sha J J, Yang J K 2022 Thermochim. Acta 713 179231Google Scholar

    [24]

    Pleşa I, Noţingher P V, Stancu C, Wiesbrock F, Schlögl S 2018 Polymers 11 24Google Scholar

    [25]

    Zhang H, Shang Y, Li M X, Zhao H, Wang X, Han B Z 2016 RSC Adv. 6 110831Google Scholar

    [26]

    Chen T H, Li Q Y, Fu Z W, Sun L W, Guo W H, Wu C F 2018 Polym. Bull. 75 2181Google Scholar

    [27]

    Backens S, Ofe S, Schmidt S, Glück N, Flügge W 2022 Mater. Test. 64 186Google Scholar

    [28]

    Ahmed M, Zhong L S, Li F, Xu N, Gao J H 2022 Materials 15 5857Google Scholar

    [29]

    Kim C, Jin Z J, Jiang P K, Zhu Z S, Wang G L 2006 Polym. Test. 25 553Google Scholar

    [30]

    李国倡, 郭孔英, 张家豪, 孙维鑫, 朱远惟, 李盛涛, 魏艳慧 2024 7 070701Google Scholar

    Li G C, Guo K Y, Zhang J H, Sun W X, Zhu Y W, Li S T, Wei Y H 2024 Acta Phys. Sin. 7 070701Google Scholar

    [31]

    Ding M, He W F, Wang J H, Wang J P 2022 Polymers 14 2282Google Scholar

    [32]

    Wan D, Qi F, Zhou Q, Zhou H Y, Zhao M, Duan X J 2021 J. Electr. Eng. Technol. 16 2885Google Scholar

    [33]

    何勇, 林凯, 梁汉远, 李振展 2023 广东化工 50 79Google Scholar

    He Y, Lin K, Liang H Y, Li Z Z 2023 Guangdong Chem. Ind. 50 79Google Scholar

    [34]

    王兆琛, 段玉兵, 魏艳慧, 李国倡, 兰锐, 郝春成, 雷清泉 2023 高压电器 59 56Google Scholar

    Wang Z C, Duan Y B, Wei Y H, Li G C, Lan R, He C C, Lei Q Q 2023 High Volt. Appar. 59 56Google Scholar

    [35]

    Kim C, Jiang P K, Liu F, Hyon S, Ri M G, Yu Y, Ho M 2019 Polym. Test. 80 106045Google Scholar

    [36]

    廖雁群, 冯冰, 罗潘, 张连杰, 卢志华, 徐阳 2016 绝缘材料 49 1Google Scholar

    Liao Y Q, Feng B, Luo P, Zhang L J, Lu Z H, Xu Y 2016 Insul. Mater. 49 1Google Scholar

    [37]

    胡一卓, 董明, 谢佳成, 何文林, 汪可, 李金忠 2020 电网技术 44 1276Google Scholar

    Hu Y Z, Dong M, Xie J C, He W L, Wang K, Li J Z 2020 Power Syst. Tech. 44 1276Google Scholar

    [38]

    郑书生, 张宗衡, 孔举, 赵岩, 闫枭虎, 吴诗优 2023 绝缘材料 56 70Google Scholar

    Zheng S S, Zhang Z H, Kong J, Zhao Y, Yan X H, Wu S Y 2023 Insul. Mater. 56 70Google Scholar

    [39]

    Hedir A, Slimani F, Moudoud M, Lamrous O, Durmus A, Fofana I 2022 Eng. Res. Express 4 015038Google Scholar

    [40]

    沈智飞, 柳宝坤, 王国栋, 李诗雨, 王娟, 黄静, 张恒玮, 周凯 2021 绝缘材料 54 60Google Scholar

    Shen Z F, Liu B K, Wang G D, Li S Y, Wang J, Huang J, Zhang H W, Zhou K 2021 Insul. Mater. 54 60Google Scholar

    [41]

    王春逢 2021 硕士学位论文(大连: 大连理工大学)

    Wang C F 2021 M. S. Thesis (Dalian: Dalian University of Technology

    [42]

    张宇涵 2019 硕士学位论文(上海: 东华大学)

    Zhang Y H 2019 M. S. Thesis (Shanghai: Donghua University

    [43]

    朱健 2017 硕士学位论文(成都: 西南交通大学)

    Zhu J 2017 M. S. Thesis (Chengdu: Southwest Jiaotong University

    [44]

    廖瑞金, 解兵, 杨丽君, 梁帅伟, 程涣超, 孙才新, 向彬 2006 电工技术学报 21 17Google Scholar

    Liao R J, Xie B, Yang L J, Liang S W, Cheng H C, Sun C X, Xiang B 2006 Trans. China Electr. Soc. 21 17Google Scholar

    [45]

    He D X, Gu J F, Wang W, Liu S Y, Song S, Yi D H 2017 Polym. Adv. Technol. 28 1020Google Scholar

    [46]

    Kim J, Yoon S, Kim D 2021 J. Electr. Eng. Technol. 16 1Google Scholar

    [47]

    Roy S S, Paramane A, Singh J, Meng F, Dai C, Das A K, Chatterjee S, Chen X R, Tanaka Y 2022 IEEE Trans. Dielectr. Electr. Insul. 30 377Google Scholar

    [48]

    Li L, Ma X M, Guo W 2022 Secur. Commun. Netw. 2022 1Google Scholar

    [49]

    Alghamdi A S, Desuqi R K 2020 Heliyon 6 e03120Google Scholar

    [50]

    孙建宇, 陈绍平, 沙菁㛃, 高俊国, 刘焱鑫, 杨决宽, 倪中华 2022 电机与控制学报 26 31Google Scholar

    Sun J Y, Chen S P, Sha J J, Gao J G, Liu Y X, Yang J K, Ni Z H 2022 Electric Machines and Control. 26 31Google Scholar

    [51]

    Li G C, Wang Z C, Lan R, Wei Y H, Nie Y J, Li S T, Li Q Q 2023 IEEE Trans. Dielectr. Electr. Insul. 30 761Google Scholar

    [52]

    马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯 2017 66 067701Google Scholar

    Ma C, Min D M, Li S T, Zheng X, Li X Y, Min C, Zhan H X 2017 Acta Phys. Sin. 66 067701Google Scholar

    [53]

    Li J L, Mou W J, Zhu J X, Hu C Q 2023 J Appl. Polym. Sci. 140 e54420Google Scholar

    [54]

    Wang Y Y, Wang C, Zhang Z X, Xiao K 2017 Nanomaterials 7 320Google Scholar

    [55]

    Zhang C C, Wang T T, Li C Y, Zhao H, Wang X 2023 IEEE Trans. Dielect. Electr. Insul. 30 56Google Scholar

    [56]

    Zych A, Verdelli A, Soliman M, Pinalli R, Vachon J, Dalcanale E 2019 Polym. Chem. 10 1741Google Scholar

    [57]

    Caffy F, Nicolaÿ R 2019 Polym. Chem. 10 3107Google Scholar

    [58]

    Mao H D, Zhang T T, Guo Z Y, Bai D Y, Wang J, Xiu H, Fu Q 2023 Chin. J. Polym. Sci. 41 1104Google Scholar

    [59]

    Zhao Y B, Mao H D, Zhang T T, Guo Z Y, Bai D Y, Bai H W, Zhang Q, Xiu H, Fu Q 2022 Ind. Eng. Chem. Res. 61 13126Google Scholar

  • 图 1  (a) PE的分子结构; XLPE的(b)分子结构和(c)相结构[19]

    Fig. 1.  (a) Molecular structure of PE; (b) molecular structure and (c) phase structure of XLPE[19].

    图 2  XLPE的密度、比热、热扩散率和导热系数随老化时间的变化[23]

    Fig. 2.  Variation of density, specific heat, thermal diffusivity and thermal conductivity of XLPE with aging time[23].

    图 3  交联聚乙烯的合成机理[24] (a)辐照交联; (b)硅烷交联; (c)过氧化物交联

    Fig. 3.  Synthetic mechanism of cross-linked polyethylene[24]: (a) Irradiation cross-linking; (b) silane cross-linking; (c) peroxide cross-linking.

    图 4  电-热老化过程中的物理反应(a), 化学反应(b)和电缆结构(c)[19,45]

    Fig. 4.  Physical reactions (a), chemical reactions (b) and structure of the cable (c) for electro-thermal aging process[19,45].

    图 5  (a)热-氧化老化过程; (b), (c) XLPE在不同老化时间下介电常数和介电损耗的变化[51]

    Fig. 5.  (a) Thermal-oxidative aging process; (b), (c) changes in dielectric constant and dielectric loss of XLPE at different aging times[51].

    图 6  纯LDPE和纳米复合材料热老化前后的图示[54]

    Fig. 6.  Illustration of neat LDPE and nanocomposites before and after thermal aging[54].

    图 7  XLPE-g-MC的接枝交联反应方案[55]

    Fig. 7.  Grafting and cross-linking reaction scheme of XLPE-g-MC[55].

    图 8  PE中通过酰胺三唑环-羧酸单元形成氢键交联的示意图[58]

    Fig. 8.  Schematic illustration of formation of H-bonds cross-linking via amide triazole ring-carboxylic acid units in PE[58].

    图 9  (a)类玻璃化LDPE的制备示意图; PE-GMA和EDx的(b)机械性能和(c)电导率[59]

    Fig. 9.  (a) Schematic diagram of preparation of LDPE vitrimers; (b) mechanical properties and (c) conductivity of PE-GMA and EDx[59].

    Baidu
  • [1]

    Pourrahimi A M, Kumara S, Palmieri F, Yu L Y, Lund A, Hammarström T, Hagstrand P O, Scheblykin I, Fabiani D, Xu X D, Müller C 2021 Adv. Mater. 33 e2100714Google Scholar

    [2]

    Chen G, Hao M, Xu Z Q, Alun V, Cao J Z, Wang H T 2015 CSEE J. Power Energy Syst. 1 9Google Scholar

    [3]

    张翀, 查俊伟, 王思蛟, 巫运辉, 闫轰达, 李维康, 陈新, 党智敏 2016 绝缘材料 49 1Google Scholar

    Zhang C, Zha J W, Wang S J, Wu Y H, Yan H D, Li W K, Chen X, Dang Z M 2016 Insul. Mater. 49 1Google Scholar

    [4]

    郑元浩 2022 硕士学位论文(青岛: 青岛科技大学)

    Zheng Y H 2022 M. S. Thesis (Qingdao: Qingdao University Science & Technology

    [5]

    D’Auria S, Pourrahimi A M, Favero A, Neuteboom P, Xu X D, Haraguchi S, Bek M, Kádár R, Dalcanale E, Pinalli R, Müller C, Vachon J 2023 Adv. Funct. Mater. 33 2301878Google Scholar

    [6]

    Wang S J, Zha J W, Wu Y H, Ren L, Dang Z M, Wu J 2015 IEEE Trans. Dielectr. Electr. Insul. 22 3350Google Scholar

    [7]

    Wang S J, Zha J W, Li W K, Dang Z M 2016 Appl. Phys. Lett. 108 092902Google Scholar

    [8]

    Wang S J, Zha J W, Li W K, Zhang D L, Dang Z M 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1365Google Scholar

    [9]

    张雅茹, 邵清, 李娟, 袁浩, 李琦, 何金良 2022 石油化工 51 587Google Scholar

    Zhang Y R, Shao Q, Li J, Yuan H, Li Q, He J L 2022 Petrochem. Technol. 51 587Google Scholar

    [10]

    俞葆青, 夏兵, 杨晓砚, 万宝全, 查俊伟 2023 72 068402Google Scholar

    Yu B Q, Xia B, Yang X Y, Wan B Q, Zha J W 2023 Acta Phys. Sin. 72 068402Google Scholar

    [11]

    Zha J W, Yan H D, Li W K, Dang Z M 2018 IEEE Trans. Dielectr. Electr. Insul. 25 1088Google Scholar

    [12]

    Zhang Y Y, Gu G F, Liu J F, Jiang F Y, Fan Y F, Zha J W 2022 Front. Mater. 9 838792Google Scholar

    [13]

    Li H, Li J Y, Li W W, Zhao X T, Wang G L, Alim M A 2013 J. Mater. Sci. : Mater. Electron. 24 1640Google Scholar

    [14]

    Zha J W, Wu Y H, Wang S J, Wu D H, Yan H D, Dang Z M 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2337Google Scholar

    [15]

    Liang C B, Song P, Gu H B, Ma C, Guo Y Q, Zhang H Y, Xu X J, Zhang Q Y, Gu J W 2017 Compos. A: Appl. Sci. Manufact. 102 126Google Scholar

    [16]

    聂永杰, 赵现平, 李盛涛 2019 68 227201Google Scholar

    Nie Y J, Zhao X P, Li S T 2019 Acta Phys. Sin. 68 227201Google Scholar

    [17]

    Zha J W, Qin Q Q, Dang Z M 2019 IEEE Trans. Dielectr. Electr. Insul. 26 868Google Scholar

    [18]

    张成, 李洪飞, 杨延滨, 王卫东, 任成燕, 黄兴溢, 江平开 2020 绝缘材料 53 19Google Scholar

    Zhang C, Li H F, Yang Y B, Wang W D, Ren C Y, Huang X Y, Jiang P K 2020 Insul. Mater. 53 19Google Scholar

    [19]

    Xu N, Zhong L S, Sui R, Ahmed M, Li F, Liu Y B, Gao J H 2022 Macromolecules 55 8186Google Scholar

    [20]

    Green C D, Vaughan A S, Stevens G C, Pye A, Sutton S J, Geussens T, Fairhurst M J 2015 IEEE Trans. Dielectr. Electr. Insul. 22 639Google Scholar

    [21]

    Xing Y Q, Liu J H, Su J G, Zha J W, Li G C, Guo Z, Zhao X Z, Feng M J 2023 High Volt. 1–11Google Scholar

    [22]

    Zhao X D, Sun W F, Zhao H 2019 Polymers 11 592Google Scholar

    [23]

    Liu Y X, Sun J Y, Chen S P, Sha J J, Yang J K 2022 Thermochim. Acta 713 179231Google Scholar

    [24]

    Pleşa I, Noţingher P V, Stancu C, Wiesbrock F, Schlögl S 2018 Polymers 11 24Google Scholar

    [25]

    Zhang H, Shang Y, Li M X, Zhao H, Wang X, Han B Z 2016 RSC Adv. 6 110831Google Scholar

    [26]

    Chen T H, Li Q Y, Fu Z W, Sun L W, Guo W H, Wu C F 2018 Polym. Bull. 75 2181Google Scholar

    [27]

    Backens S, Ofe S, Schmidt S, Glück N, Flügge W 2022 Mater. Test. 64 186Google Scholar

    [28]

    Ahmed M, Zhong L S, Li F, Xu N, Gao J H 2022 Materials 15 5857Google Scholar

    [29]

    Kim C, Jin Z J, Jiang P K, Zhu Z S, Wang G L 2006 Polym. Test. 25 553Google Scholar

    [30]

    李国倡, 郭孔英, 张家豪, 孙维鑫, 朱远惟, 李盛涛, 魏艳慧 2024 7 070701Google Scholar

    Li G C, Guo K Y, Zhang J H, Sun W X, Zhu Y W, Li S T, Wei Y H 2024 Acta Phys. Sin. 7 070701Google Scholar

    [31]

    Ding M, He W F, Wang J H, Wang J P 2022 Polymers 14 2282Google Scholar

    [32]

    Wan D, Qi F, Zhou Q, Zhou H Y, Zhao M, Duan X J 2021 J. Electr. Eng. Technol. 16 2885Google Scholar

    [33]

    何勇, 林凯, 梁汉远, 李振展 2023 广东化工 50 79Google Scholar

    He Y, Lin K, Liang H Y, Li Z Z 2023 Guangdong Chem. Ind. 50 79Google Scholar

    [34]

    王兆琛, 段玉兵, 魏艳慧, 李国倡, 兰锐, 郝春成, 雷清泉 2023 高压电器 59 56Google Scholar

    Wang Z C, Duan Y B, Wei Y H, Li G C, Lan R, He C C, Lei Q Q 2023 High Volt. Appar. 59 56Google Scholar

    [35]

    Kim C, Jiang P K, Liu F, Hyon S, Ri M G, Yu Y, Ho M 2019 Polym. Test. 80 106045Google Scholar

    [36]

    廖雁群, 冯冰, 罗潘, 张连杰, 卢志华, 徐阳 2016 绝缘材料 49 1Google Scholar

    Liao Y Q, Feng B, Luo P, Zhang L J, Lu Z H, Xu Y 2016 Insul. Mater. 49 1Google Scholar

    [37]

    胡一卓, 董明, 谢佳成, 何文林, 汪可, 李金忠 2020 电网技术 44 1276Google Scholar

    Hu Y Z, Dong M, Xie J C, He W L, Wang K, Li J Z 2020 Power Syst. Tech. 44 1276Google Scholar

    [38]

    郑书生, 张宗衡, 孔举, 赵岩, 闫枭虎, 吴诗优 2023 绝缘材料 56 70Google Scholar

    Zheng S S, Zhang Z H, Kong J, Zhao Y, Yan X H, Wu S Y 2023 Insul. Mater. 56 70Google Scholar

    [39]

    Hedir A, Slimani F, Moudoud M, Lamrous O, Durmus A, Fofana I 2022 Eng. Res. Express 4 015038Google Scholar

    [40]

    沈智飞, 柳宝坤, 王国栋, 李诗雨, 王娟, 黄静, 张恒玮, 周凯 2021 绝缘材料 54 60Google Scholar

    Shen Z F, Liu B K, Wang G D, Li S Y, Wang J, Huang J, Zhang H W, Zhou K 2021 Insul. Mater. 54 60Google Scholar

    [41]

    王春逢 2021 硕士学位论文(大连: 大连理工大学)

    Wang C F 2021 M. S. Thesis (Dalian: Dalian University of Technology

    [42]

    张宇涵 2019 硕士学位论文(上海: 东华大学)

    Zhang Y H 2019 M. S. Thesis (Shanghai: Donghua University

    [43]

    朱健 2017 硕士学位论文(成都: 西南交通大学)

    Zhu J 2017 M. S. Thesis (Chengdu: Southwest Jiaotong University

    [44]

    廖瑞金, 解兵, 杨丽君, 梁帅伟, 程涣超, 孙才新, 向彬 2006 电工技术学报 21 17Google Scholar

    Liao R J, Xie B, Yang L J, Liang S W, Cheng H C, Sun C X, Xiang B 2006 Trans. China Electr. Soc. 21 17Google Scholar

    [45]

    He D X, Gu J F, Wang W, Liu S Y, Song S, Yi D H 2017 Polym. Adv. Technol. 28 1020Google Scholar

    [46]

    Kim J, Yoon S, Kim D 2021 J. Electr. Eng. Technol. 16 1Google Scholar

    [47]

    Roy S S, Paramane A, Singh J, Meng F, Dai C, Das A K, Chatterjee S, Chen X R, Tanaka Y 2022 IEEE Trans. Dielectr. Electr. Insul. 30 377Google Scholar

    [48]

    Li L, Ma X M, Guo W 2022 Secur. Commun. Netw. 2022 1Google Scholar

    [49]

    Alghamdi A S, Desuqi R K 2020 Heliyon 6 e03120Google Scholar

    [50]

    孙建宇, 陈绍平, 沙菁㛃, 高俊国, 刘焱鑫, 杨决宽, 倪中华 2022 电机与控制学报 26 31Google Scholar

    Sun J Y, Chen S P, Sha J J, Gao J G, Liu Y X, Yang J K, Ni Z H 2022 Electric Machines and Control. 26 31Google Scholar

    [51]

    Li G C, Wang Z C, Lan R, Wei Y H, Nie Y J, Li S T, Li Q Q 2023 IEEE Trans. Dielectr. Electr. Insul. 30 761Google Scholar

    [52]

    马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯 2017 66 067701Google Scholar

    Ma C, Min D M, Li S T, Zheng X, Li X Y, Min C, Zhan H X 2017 Acta Phys. Sin. 66 067701Google Scholar

    [53]

    Li J L, Mou W J, Zhu J X, Hu C Q 2023 J Appl. Polym. Sci. 140 e54420Google Scholar

    [54]

    Wang Y Y, Wang C, Zhang Z X, Xiao K 2017 Nanomaterials 7 320Google Scholar

    [55]

    Zhang C C, Wang T T, Li C Y, Zhao H, Wang X 2023 IEEE Trans. Dielect. Electr. Insul. 30 56Google Scholar

    [56]

    Zych A, Verdelli A, Soliman M, Pinalli R, Vachon J, Dalcanale E 2019 Polym. Chem. 10 1741Google Scholar

    [57]

    Caffy F, Nicolaÿ R 2019 Polym. Chem. 10 3107Google Scholar

    [58]

    Mao H D, Zhang T T, Guo Z Y, Bai D Y, Wang J, Xiu H, Fu Q 2023 Chin. J. Polym. Sci. 41 1104Google Scholar

    [59]

    Zhao Y B, Mao H D, Zhang T T, Guo Z Y, Bai D Y, Bai H W, Zhang Q, Xiu H, Fu Q 2022 Ind. Eng. Chem. Res. 61 13126Google Scholar

  • [1] 王荣, 杨静, 张涛, 于润升, 董俊才, 张鹏, 曹兴忠, 王宝义, 尹昊. 聚乙烯亚胺改性介孔氧化硅载体孔结构的调控机理.  , 2023, 72(16): 168104. doi: 10.7498/aps.72.20230675
    [2] 徐文雪, 梁新刚, 徐向华, 祝渊. 交联对硅橡胶热导率影响的分子动力学模拟.  , 2020, 69(19): 196601. doi: 10.7498/aps.69.20200737
    [3] 聂永杰, 赵现平, 李盛涛. 聚乙烯陷阱特性对真空直流沿面闪络性能的影响.  , 2019, 68(22): 227201. doi: 10.7498/aps.68.20190741
    [4] 温亚飞, 王圣智, 徐忠孝, 李淑静, 王海. 冷原子系综中两正交光场偏振模高效率存储的实验研究.  , 2018, 67(1): 014204. doi: 10.7498/aps.67.20171217
    [5] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成. 基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性.  , 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [6] 李丽丽, 张晓虹, 王玉龙, 国家辉, 张双. 基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟.  , 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [7] 冯奇, 李梦凯, 唐海通, 王晓东, 高忠民, 孟繁玲. 石墨烯/聚乙烯醇/聚偏氟乙烯基纳米复合薄膜的介电性能.  , 2016, 65(18): 188101. doi: 10.7498/aps.65.188101
    [8] 马国亮, 杨剑群, 李兴冀, 刘超铭, 侯春风. 电子辐照聚乙烯/碳纳米管拉伸变形机理.  , 2016, 65(17): 178104. doi: 10.7498/aps.65.178104
    [9] 武丽明, 张晓青. 交联聚丙烯压电驻极体的压电性能及振动能量采集研究.  , 2015, 64(17): 177701. doi: 10.7498/aps.64.177701
    [10] 屠德民, 王霞, 吕泽鹏, 吴锴, 彭宗仁. 以能带理论诠释直流聚乙烯绝缘中空间电荷的形成和抑制机理.  , 2012, 61(1): 017104. doi: 10.7498/aps.61.017104
    [11] 陈向荣, 徐阳, 刘英, 曹晓珑. 交联聚乙烯电缆绝缘材料中电树枝的导电特性研究.  , 2012, 61(8): 087701. doi: 10.7498/aps.61.087701
    [12] 王文芳, 陈科, 邬静达, 文锦辉, 赖天树. 长寿命吸收过程对超快动力学过程测量的影响.  , 2011, 60(11): 117802. doi: 10.7498/aps.60.117802
    [13] 李盛涛, 黄奇峰, 孙健, 张拓, 李建英. 聚集态和陷阱对交联聚乙烯真空沿面闪络特性的影响.  , 2010, 59(1): 422-429. doi: 10.7498/aps.59.422
    [14] 张迎晨, 朱海燕, 黄婧南, 邹静, 吴红艳, 邱夷平. 氧等离子体处理对纳米二氧化硅溶胶涂覆高强、高模聚乙烯纤维拉伸性能的影响.  , 2009, 58(13): 292-S297. doi: 10.7498/aps.58.292
    [15] 夏俊峰, 张冶文, 郑飞虎, 雷清泉. 聚乙烯空间电荷包行为的形成机理与仿真方法研究.  , 2009, 58(12): 8529-8536. doi: 10.7498/aps.58.8529
    [16] 谢安生, 李盛涛, 郑晓泉. 高频电压下交联聚乙烯电缆绝缘中电树枝生长的动力学模型.  , 2008, 57(6): 3828-3833. doi: 10.7498/aps.57.3828
    [17] 孙世菊, 滕 枫, 徐 征, 张延芬, 侯延冰. 聚乙烯基咔唑与Alq3混合薄膜的发光性能与能量传递过程.  , 2004, 53(11): 3934-3939. doi: 10.7498/aps.53.3934
    [18] 于涛, 彭增辉, 阮圣平, 宣丽. 单体光交联制备液晶垂直取向膜.  , 2004, 53(1): 316-319. doi: 10.7498/aps.53.316
    [19] 程继新, 史强, 双丰, 朱清时. 多色强激光场与分子耦合制备长寿命局域模振动.  , 1997, 46(6): 1079-1087. doi: 10.7498/aps.46.1079
    [20] 程继新, 史强, 双丰, 朱清时. 强单色激光场与分子耦合制备长寿命局域模振动.  , 1997, 46(5): 852-861. doi: 10.7498/aps.46.852
计量
  • 文章访问数:  3311
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-30
  • 修回日期:  2024-02-26
  • 上网日期:  2024-03-19
  • 刊出日期:  2024-04-05

/

返回文章
返回
Baidu
map