-
A high-efficiency 2 μm optical parametric oscillator based on MgO-doped periodically poled LiNbO3 intracavity pumped by a 1.064 μm Q-switched Nd:YVO4 laser is reported. With the intense fluence inside the laser cavity, a maximum 2 μm average power of 3.5 W is obtained at 15 kHz repetition rate in a degenerate state. A maximum optical-to-optical conversion efficiency of 17.5% with a slope efficiency of 25% is achieved when the laser diode power is 20 W. To the best of our knowledge, the efficiency is the highest ever achieved from an intracavity degenerate optical parametric oscillator in 2 μm region. The pulse duration of 2 μm is 1.4 ns, which is much shorter than that of 1.064 μm. A bandwidth of 30 nm is obtained at a degenerate wavelength of 2128 nm. The M2 values for the 2 μm beam are 3.47 and 3.54 in the horizontal and vertical directions, respectively. The standard deviation of the power fluctuation is ~ 2% at the maximum power in half an hour.
-
Keywords:
- optical parametric oscillator /
- degenerate /
- high efficiency /
- 2 μm
[1] Henderson S W, Suni P J M, Hale C P, Hannon S M, Magee J R, Bruns D L, Yuen E H 1993 IEEE Trans. Geosci. Remote Sens. 31 4
[2] Sumiyoshi T, Sekita H, Arai T, Sato S, Ishihara M, Kikuchi M 1999 IEEE J. Sel. Top. Quant. Electron. 5 936
[3] Geng Y F, Tan X L, Li X J, Yao J Q 2010 Chin. Phys. B 19 114209
[4] Phua P B, Lai K S, Wu R F 2000 Appl. Opt. 39 1435
[5] Wu R F, Phua P B, Lai K S, Lim Y L, Lau E, Chang A, Bonnin C, Lupinski D 2000 Opt. Lett. 25 1460
[6] Wu R F, Lai K S, Lau E, Wong H F, Xie W J, Lim Y L, Lim K W, Chia L 2002 Advanced Solid State Lasers, OSA Trends in Optics and Photonics Series 68 paper TuA4
[7] Phua P B, Tan B S, Wu R F, Lai K S, Chia L, Lau E 2006 Opt. Lett. 31 489
[8] Guo J, Lu G G, He G Y, Jiao Z X, Wang B 2013 Laser Phys. Lett. 10 115403
[9] Ji F, Yao J Q, Zhang B G, Zhang T L, Xu D G, Wang P 2008 Chin. Phys. B 17 1286
[10] Cho K H, Rhee B K, Sasaki Y, Ito H 2005 J. Nonlinear Opt. Phys. 14 383
[11] Cho K H, Rhee B K 2008 Proc. SPIE 6875 68751A
[12] Jiao Z X, He G Y, Guo J, Wang B 2012 Opt. Lett. 37 64
[13] Jiao Z X, Guo J, He G Y, Lu G G, Wang B 2014 Opt. Laser Technol. 56 230
[14] Falk J, Yarborough J M, Ammann E O 1971 IEEE J. Quant. Electron. 7 359
[15] Debuisschert T, Raffy J, Pocholle J-P, Papuchon M 1996 J. Opt. Soc. Am. B 13 1569
[16] He G Y, Guo J, Jiao Z X, Wang B 2012 Opt. Lett. 37 1364
-
[1] Henderson S W, Suni P J M, Hale C P, Hannon S M, Magee J R, Bruns D L, Yuen E H 1993 IEEE Trans. Geosci. Remote Sens. 31 4
[2] Sumiyoshi T, Sekita H, Arai T, Sato S, Ishihara M, Kikuchi M 1999 IEEE J. Sel. Top. Quant. Electron. 5 936
[3] Geng Y F, Tan X L, Li X J, Yao J Q 2010 Chin. Phys. B 19 114209
[4] Phua P B, Lai K S, Wu R F 2000 Appl. Opt. 39 1435
[5] Wu R F, Phua P B, Lai K S, Lim Y L, Lau E, Chang A, Bonnin C, Lupinski D 2000 Opt. Lett. 25 1460
[6] Wu R F, Lai K S, Lau E, Wong H F, Xie W J, Lim Y L, Lim K W, Chia L 2002 Advanced Solid State Lasers, OSA Trends in Optics and Photonics Series 68 paper TuA4
[7] Phua P B, Tan B S, Wu R F, Lai K S, Chia L, Lau E 2006 Opt. Lett. 31 489
[8] Guo J, Lu G G, He G Y, Jiao Z X, Wang B 2013 Laser Phys. Lett. 10 115403
[9] Ji F, Yao J Q, Zhang B G, Zhang T L, Xu D G, Wang P 2008 Chin. Phys. B 17 1286
[10] Cho K H, Rhee B K, Sasaki Y, Ito H 2005 J. Nonlinear Opt. Phys. 14 383
[11] Cho K H, Rhee B K 2008 Proc. SPIE 6875 68751A
[12] Jiao Z X, He G Y, Guo J, Wang B 2012 Opt. Lett. 37 64
[13] Jiao Z X, Guo J, He G Y, Lu G G, Wang B 2014 Opt. Laser Technol. 56 230
[14] Falk J, Yarborough J M, Ammann E O 1971 IEEE J. Quant. Electron. 7 359
[15] Debuisschert T, Raffy J, Pocholle J-P, Papuchon M 1996 J. Opt. Soc. Am. B 13 1569
[16] He G Y, Guo J, Jiao Z X, Wang B 2012 Opt. Lett. 37 1364
Catalog
Metrics
- Abstract views: 6477
- PDF Downloads: 470
- Cited By: 0