-
为了缓解AlGaN/GaN high electron mobility transistors (HEMT)器件 n型GaN缓冲层高的泄漏电流, 本文提出了具有氟离子注入新型Al0.25Ga0.75N/GaN HEMT器件新结构. 首先分析得出n型GaN缓冲层没有受主型陷阱时, 器件输出特性为欧姆特性, 这样就从理论和仿真方面解释了文献生长GaN缓冲层掺杂Fe, Mg等离子的原因. 利用器件输出特性分别分析了栅边缘有和没有低掺杂漏极时, 氟离子分别注入源区、栅极区域和漏区的情况, 得出当氟离子注入源区时, 形成的受主型陷阱能有效俘获源极发射的电子而减小GaN缓冲层的泄漏电流, 击穿电压达到262 V. 通过减小GaN缓冲层体泄漏电流, 提高器件击穿电压, 设计具有一定输出功率新型AlGaN/GaN HEMT 提供了科学依据.In order to alleviate the leakage current of AlGaN/GaN High Electron Mobility Transistors (HEMT) device with the N-type GaN buffer, the new Al0.25Ga0.75N/GaN HEMT with the Fluoride ion implantation is proposed for the first time in this paper. Firstly, the output characteristic has the ohmic characteristic for the AlGaN/GaN HEMT without acceptor-type trap, which explains why Fe and Mg are doped into the GaN buffer layer as reported in the literature in theory and simulation. By using the output characteristics of the Ids-Vds for the AlGaN/GaN HEMTs with and without low density drain, the results are obtained that fluoride ion implantation can capture effectively the electrons emitted from the source to reduce the leakage current of the GaN buffer compared with fluoride ions in the gate and the drain regions. The breakdown voltage goes up to 262 V. The scientific basis is set up for desiging the new AlGaN/GaN HEMT with both the low leakage current and the high breakdown voltage.
-
Keywords:
- AlGaN/GaN /
- HEMT /
- fluoride ion /
- breakdown voltage
[1] Malinowski P E, Joachim John, Jean Yves Duboz 2009 IEEE Electron Device Lett. 23 1308
[2] Chumbes E M, Schremer A T, Smart J A 2001 IEEE Transactions on Electron Devices 48 420
[3] Song D, Liu J, Cheng Z Q, Wilson C W, Tang K M L, Chen K J 2007 IEEE Electron Device Lett. 28 189
[4] Ando Y, Okamoto Y, Miyamoto H, Nakayama T, Inoue T, Kuzuhara M 2003 IEEE Electron Device Lett. 24 289
[5] Saxler Y F W A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder U K M, Parikh D P 2004 IEEE Electron Device Lett. 25 117
[6] Hsien C C, Chia S C, Yuan J S 2005 Semicond. Sci. Techno. 20 1183
[7] Tipirneni N, Koudymov A, Adivarahan V, Yang J G S, Asif Khan M 2006 IEEE Electron Device Lett. 27 716
[8] Subramaniam A, Takashi E, Lawrence S and Hiroyasu I 2006 Japanese Journal of Applied Physics 45 L220
[9] Bardwell J A, Haffouz S, McKinnon W R, Storey C, Tang H, Sproule G I, Roth D, Wang R 2007 Electrochemical and Solid-State Letters 10 H46
[10] Arulkumaran S, Liu Z H, Ng G I, Cheong W C, Zeng R, Bu J, Wang H, Radhakrishnan K, Tan C L 2007 Thin Solid Films 515 4517
[11] Arulkumaran S, Egawa T, Ishikawa H, Jimbo T 2003 Appl. Phys. Lett. 82 3110
[12] Chen X B, Johnny K O S 2001 IEEE Trans Electron Devices. 48 344
[13] Sameh G, Nassif K, Salama C A T 2003 IEEE Trans. Electron Devices. 50 1385
[14] Shreepad K, Michael S S, Grigory S 2005 Trans. Electron Devices. 52 2534
[15] Wataru S, Masahiko K, Yoshiharu T 2005 IEEE Trans. Electron Devices 52 106
[16] Duan B X, Yang Y T 2012 Micro & Nano Letter. 7 9
[17] Duan B X, Yang Y T 2012 Sci China Inf Sci. 55 473
[18] Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyoshi T, Daisuke U 2008 IEEE Electron Device Lett. 29 1087
[19] Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Device Lett. 30 1329
[20] Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Device Lett. 30 305
[21] Duan B X, Yang Y T 2011 IEEE Trans. Electron Devices 58 2057
[22] Duan B X, Yang Y T, Zhang B 2010 Solid-State Electronics 54 685
[23] Shreepad K, Deng J Y, Michael S S, Remis G 2001 IEEE Electron Device Lett. 22 373
[24] Heikman S, Keller S, DenBaars S P, Mishra U K 2002 Appl. Phys. Lett. 81 439
[25] Tang H, Webb J B, Bardwell J A, Raymond S, Salzman J, Uzan-Saguy C 2001 Appl. Phys. Lett. 78 757
[26] Webb J B, Tang H, Rolfe S, Bardwell J A 1999 Appl. Phys. Lett. 75 953
[27] Katzer D S, Storm D F, Binari S C, Roussos J A, Shanabrook B V, Glaser E R 2003 J. Cryst. Growth. 251 481
[28] Poblenz C, Waltereit P, Rajan S, Heikman S, Mishra U K, Speck J S 2004 J. Vac. Sci. Technol. B 22 114
-
[1] Malinowski P E, Joachim John, Jean Yves Duboz 2009 IEEE Electron Device Lett. 23 1308
[2] Chumbes E M, Schremer A T, Smart J A 2001 IEEE Transactions on Electron Devices 48 420
[3] Song D, Liu J, Cheng Z Q, Wilson C W, Tang K M L, Chen K J 2007 IEEE Electron Device Lett. 28 189
[4] Ando Y, Okamoto Y, Miyamoto H, Nakayama T, Inoue T, Kuzuhara M 2003 IEEE Electron Device Lett. 24 289
[5] Saxler Y F W A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder U K M, Parikh D P 2004 IEEE Electron Device Lett. 25 117
[6] Hsien C C, Chia S C, Yuan J S 2005 Semicond. Sci. Techno. 20 1183
[7] Tipirneni N, Koudymov A, Adivarahan V, Yang J G S, Asif Khan M 2006 IEEE Electron Device Lett. 27 716
[8] Subramaniam A, Takashi E, Lawrence S and Hiroyasu I 2006 Japanese Journal of Applied Physics 45 L220
[9] Bardwell J A, Haffouz S, McKinnon W R, Storey C, Tang H, Sproule G I, Roth D, Wang R 2007 Electrochemical and Solid-State Letters 10 H46
[10] Arulkumaran S, Liu Z H, Ng G I, Cheong W C, Zeng R, Bu J, Wang H, Radhakrishnan K, Tan C L 2007 Thin Solid Films 515 4517
[11] Arulkumaran S, Egawa T, Ishikawa H, Jimbo T 2003 Appl. Phys. Lett. 82 3110
[12] Chen X B, Johnny K O S 2001 IEEE Trans Electron Devices. 48 344
[13] Sameh G, Nassif K, Salama C A T 2003 IEEE Trans. Electron Devices. 50 1385
[14] Shreepad K, Michael S S, Grigory S 2005 Trans. Electron Devices. 52 2534
[15] Wataru S, Masahiko K, Yoshiharu T 2005 IEEE Trans. Electron Devices 52 106
[16] Duan B X, Yang Y T 2012 Micro & Nano Letter. 7 9
[17] Duan B X, Yang Y T 2012 Sci China Inf Sci. 55 473
[18] Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyoshi T, Daisuke U 2008 IEEE Electron Device Lett. 29 1087
[19] Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Device Lett. 30 1329
[20] Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Device Lett. 30 305
[21] Duan B X, Yang Y T 2011 IEEE Trans. Electron Devices 58 2057
[22] Duan B X, Yang Y T, Zhang B 2010 Solid-State Electronics 54 685
[23] Shreepad K, Deng J Y, Michael S S, Remis G 2001 IEEE Electron Device Lett. 22 373
[24] Heikman S, Keller S, DenBaars S P, Mishra U K 2002 Appl. Phys. Lett. 81 439
[25] Tang H, Webb J B, Bardwell J A, Raymond S, Salzman J, Uzan-Saguy C 2001 Appl. Phys. Lett. 78 757
[26] Webb J B, Tang H, Rolfe S, Bardwell J A 1999 Appl. Phys. Lett. 75 953
[27] Katzer D S, Storm D F, Binari S C, Roussos J A, Shanabrook B V, Glaser E R 2003 J. Cryst. Growth. 251 481
[28] Poblenz C, Waltereit P, Rajan S, Heikman S, Mishra U K, Speck J S 2004 J. Vac. Sci. Technol. B 22 114
计量
- 文章访问数: 9727
- PDF下载量: 709
- 被引次数: 0