搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

F离子注入新型Al0.25Ga0.75 N/GaN HEMT 器件耐压分析

段宝兴 杨银堂 陈敬

引用本文:
Citation:

F离子注入新型Al0.25Ga0.75 N/GaN HEMT 器件耐压分析

段宝兴, 杨银堂, 陈敬

Breakdown voltage analysis for new Al0.25Ga0.75N/GaN HEMT with F ion implantation

Duan Bao-Xing, Yang Yin-Tang, Kevin J. Chen
PDF
导出引用
  • 为了缓解AlGaN/GaN high electron mobility transistors (HEMT)器件 n型GaN缓冲层高的泄漏电流, 本文提出了具有氟离子注入新型Al0.25Ga0.75N/GaN HEMT器件新结构. 首先分析得出n型GaN缓冲层没有受主型陷阱时, 器件输出特性为欧姆特性, 这样就从理论和仿真方面解释了文献生长GaN缓冲层掺杂Fe, Mg等离子的原因. 利用器件输出特性分别分析了栅边缘有和没有低掺杂漏极时, 氟离子分别注入源区、栅极区域和漏区的情况, 得出当氟离子注入源区时, 形成的受主型陷阱能有效俘获源极发射的电子而减小GaN缓冲层的泄漏电流, 击穿电压达到262 V. 通过减小GaN缓冲层体泄漏电流, 提高器件击穿电压, 设计具有一定输出功率新型AlGaN/GaN HEMT 提供了科学依据.
    In order to alleviate the leakage current of AlGaN/GaN High Electron Mobility Transistors (HEMT) device with the N-type GaN buffer, the new Al0.25Ga0.75N/GaN HEMT with the Fluoride ion implantation is proposed for the first time in this paper. Firstly, the output characteristic has the ohmic characteristic for the AlGaN/GaN HEMT without acceptor-type trap, which explains why Fe and Mg are doped into the GaN buffer layer as reported in the literature in theory and simulation. By using the output characteristics of the Ids-Vds for the AlGaN/GaN HEMTs with and without low density drain, the results are obtained that fluoride ion implantation can capture effectively the electrons emitted from the source to reduce the leakage current of the GaN buffer compared with fluoride ions in the gate and the drain regions. The breakdown voltage goes up to 262 V. The scientific basis is set up for desiging the new AlGaN/GaN HEMT with both the low leakage current and the high breakdown voltage.
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 61106076)和国家自然科学基金重点项目(批准号: 61234006) 资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61106076), and the State Key Program of National Natural Science of China (Grant No.61234006).
    [1]

    Malinowski P E, Joachim John, Jean Yves Duboz 2009 IEEE Electron Device Lett. 23 1308

    [2]

    Chumbes E M, Schremer A T, Smart J A 2001 IEEE Transactions on Electron Devices 48 420

    [3]

    Song D, Liu J, Cheng Z Q, Wilson C W, Tang K M L, Chen K J 2007 IEEE Electron Device Lett. 28 189

    [4]

    Ando Y, Okamoto Y, Miyamoto H, Nakayama T, Inoue T, Kuzuhara M 2003 IEEE Electron Device Lett. 24 289

    [5]

    Saxler Y F W A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder U K M, Parikh D P 2004 IEEE Electron Device Lett. 25 117

    [6]

    Hsien C C, Chia S C, Yuan J S 2005 Semicond. Sci. Techno. 20 1183

    [7]

    Tipirneni N, Koudymov A, Adivarahan V, Yang J G S, Asif Khan M 2006 IEEE Electron Device Lett. 27 716

    [8]

    Subramaniam A, Takashi E, Lawrence S and Hiroyasu I 2006 Japanese Journal of Applied Physics 45 L220

    [9]

    Bardwell J A, Haffouz S, McKinnon W R, Storey C, Tang H, Sproule G I, Roth D, Wang R 2007 Electrochemical and Solid-State Letters 10 H46

    [10]

    Arulkumaran S, Liu Z H, Ng G I, Cheong W C, Zeng R, Bu J, Wang H, Radhakrishnan K, Tan C L 2007 Thin Solid Films 515 4517

    [11]

    Arulkumaran S, Egawa T, Ishikawa H, Jimbo T 2003 Appl. Phys. Lett. 82 3110

    [12]

    Chen X B, Johnny K O S 2001 IEEE Trans Electron Devices. 48 344

    [13]

    Sameh G, Nassif K, Salama C A T 2003 IEEE Trans. Electron Devices. 50 1385

    [14]

    Shreepad K, Michael S S, Grigory S 2005 Trans. Electron Devices. 52 2534

    [15]

    Wataru S, Masahiko K, Yoshiharu T 2005 IEEE Trans. Electron Devices 52 106

    [16]

    Duan B X, Yang Y T 2012 Micro & Nano Letter. 7 9

    [17]

    Duan B X, Yang Y T 2012 Sci China Inf Sci. 55 473

    [18]

    Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyoshi T, Daisuke U 2008 IEEE Electron Device Lett. 29 1087

    [19]

    Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Device Lett. 30 1329

    [20]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Device Lett. 30 305

    [21]

    Duan B X, Yang Y T 2011 IEEE Trans. Electron Devices 58 2057

    [22]

    Duan B X, Yang Y T, Zhang B 2010 Solid-State Electronics 54 685

    [23]

    Shreepad K, Deng J Y, Michael S S, Remis G 2001 IEEE Electron Device Lett. 22 373

    [24]

    Heikman S, Keller S, DenBaars S P, Mishra U K 2002 Appl. Phys. Lett. 81 439

    [25]

    Tang H, Webb J B, Bardwell J A, Raymond S, Salzman J, Uzan-Saguy C 2001 Appl. Phys. Lett. 78 757

    [26]

    Webb J B, Tang H, Rolfe S, Bardwell J A 1999 Appl. Phys. Lett. 75 953

    [27]

    Katzer D S, Storm D F, Binari S C, Roussos J A, Shanabrook B V, Glaser E R 2003 J. Cryst. Growth. 251 481

    [28]

    Poblenz C, Waltereit P, Rajan S, Heikman S, Mishra U K, Speck J S 2004 J. Vac. Sci. Technol. B 22 114

  • [1]

    Malinowski P E, Joachim John, Jean Yves Duboz 2009 IEEE Electron Device Lett. 23 1308

    [2]

    Chumbes E M, Schremer A T, Smart J A 2001 IEEE Transactions on Electron Devices 48 420

    [3]

    Song D, Liu J, Cheng Z Q, Wilson C W, Tang K M L, Chen K J 2007 IEEE Electron Device Lett. 28 189

    [4]

    Ando Y, Okamoto Y, Miyamoto H, Nakayama T, Inoue T, Kuzuhara M 2003 IEEE Electron Device Lett. 24 289

    [5]

    Saxler Y F W A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder U K M, Parikh D P 2004 IEEE Electron Device Lett. 25 117

    [6]

    Hsien C C, Chia S C, Yuan J S 2005 Semicond. Sci. Techno. 20 1183

    [7]

    Tipirneni N, Koudymov A, Adivarahan V, Yang J G S, Asif Khan M 2006 IEEE Electron Device Lett. 27 716

    [8]

    Subramaniam A, Takashi E, Lawrence S and Hiroyasu I 2006 Japanese Journal of Applied Physics 45 L220

    [9]

    Bardwell J A, Haffouz S, McKinnon W R, Storey C, Tang H, Sproule G I, Roth D, Wang R 2007 Electrochemical and Solid-State Letters 10 H46

    [10]

    Arulkumaran S, Liu Z H, Ng G I, Cheong W C, Zeng R, Bu J, Wang H, Radhakrishnan K, Tan C L 2007 Thin Solid Films 515 4517

    [11]

    Arulkumaran S, Egawa T, Ishikawa H, Jimbo T 2003 Appl. Phys. Lett. 82 3110

    [12]

    Chen X B, Johnny K O S 2001 IEEE Trans Electron Devices. 48 344

    [13]

    Sameh G, Nassif K, Salama C A T 2003 IEEE Trans. Electron Devices. 50 1385

    [14]

    Shreepad K, Michael S S, Grigory S 2005 Trans. Electron Devices. 52 2534

    [15]

    Wataru S, Masahiko K, Yoshiharu T 2005 IEEE Trans. Electron Devices 52 106

    [16]

    Duan B X, Yang Y T 2012 Micro & Nano Letter. 7 9

    [17]

    Duan B X, Yang Y T 2012 Sci China Inf Sci. 55 473

    [18]

    Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyoshi T, Daisuke U 2008 IEEE Electron Device Lett. 29 1087

    [19]

    Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Device Lett. 30 1329

    [20]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Device Lett. 30 305

    [21]

    Duan B X, Yang Y T 2011 IEEE Trans. Electron Devices 58 2057

    [22]

    Duan B X, Yang Y T, Zhang B 2010 Solid-State Electronics 54 685

    [23]

    Shreepad K, Deng J Y, Michael S S, Remis G 2001 IEEE Electron Device Lett. 22 373

    [24]

    Heikman S, Keller S, DenBaars S P, Mishra U K 2002 Appl. Phys. Lett. 81 439

    [25]

    Tang H, Webb J B, Bardwell J A, Raymond S, Salzman J, Uzan-Saguy C 2001 Appl. Phys. Lett. 78 757

    [26]

    Webb J B, Tang H, Rolfe S, Bardwell J A 1999 Appl. Phys. Lett. 75 953

    [27]

    Katzer D S, Storm D F, Binari S C, Roussos J A, Shanabrook B V, Glaser E R 2003 J. Cryst. Growth. 251 481

    [28]

    Poblenz C, Waltereit P, Rajan S, Heikman S, Mishra U K, Speck J S 2004 J. Vac. Sci. Technol. B 22 114

  • [1] 武鹏, 李若晗, 张涛, 张进成, 郝跃. AlGaN/GaN肖特基二极管阳极后退火界面态修复技术.  , 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [2] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理.  , 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [3] 刘乃漳, 张雪冰, 姚若河. AlGaN/GaN高电子迁移率器件外部边缘电容的物理模型.  , 2020, 69(7): 077302. doi: 10.7498/aps.69.20191931
    [4] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应.  , 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [5] 袁嵩, 段宝兴, 袁小宁, 马建冲, 李春来, 曹震, 郭海军, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaNHEMTs器件实验研究.  , 2015, 64(23): 237302. doi: 10.7498/aps.64.237302
    [6] 朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕. GaN HEMT欧姆接触模式对电学特性的影响.  , 2014, 63(11): 117302. doi: 10.7498/aps.63.117302
    [7] 段宝兴, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaN HEMTs击穿特性分析.  , 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [8] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究.  , 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [9] 段宝兴, 杨银堂, Kevin J. Chen. 新型Si3N4层部分固定正电荷AlGaN/GaN HEMTs器件耐压分析.  , 2012, 61(24): 247302. doi: 10.7498/aps.61.247302
    [10] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型.  , 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [11] 王鑫华, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 郑英奎, 魏珂, 刘新宇. GaN HEMT栅边缘电容用于缺陷的研究.  , 2011, 60(9): 097101. doi: 10.7498/aps.60.097101
    [12] 王鑫华, 赵妙, 刘新宇, 蒲颜, 郑英奎, 魏珂. AlGaN/AlN/GaN高电子迁移率器件的电容电压特性的经验拟合.  , 2011, 60(4): 047101. doi: 10.7498/aps.60.047101
    [13] 张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃. 背势垒层结构对AlGaN/GaN双异质结载流子分布特性的影响.  , 2009, 58(5): 3409-3415. doi: 10.7498/aps.58.3409
    [14] 王冲, 全思, 张金凤, 郝跃, 冯倩, 陈军峰. AlGaN/GaN槽栅HEMT模拟与实验研究.  , 2009, 58(3): 1966-1970. doi: 10.7498/aps.58.1966
    [15] 刘林杰, 岳远征, 张进城, 马晓华, 董作典, 郝跃. Al2O3绝缘栅AlGaN/GaN MOS-HEMT器件温度特性研究.  , 2009, 58(1): 536-540. doi: 10.7498/aps.58.536
    [16] 魏 巍, 郝 跃, 冯 倩, 张进城, 张金凤. AlGaN/GaN场板结构高电子迁移率晶体管的场板尺寸优化分析.  , 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [17] 范 隆, 郝 跃. 辐射感生应力弛豫对AlmGa1-mN/GaN HEMT电学特性的影响.  , 2007, 56(6): 3393-3399. doi: 10.7498/aps.56.3393
    [18] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析.  , 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [19] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究.  , 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
    [20] 李东临, 曾一平. InP基HEMT器件中二维电子气浓度及分布与沟道层厚度关系的理论分析.  , 2006, 55(7): 3677-3682. doi: 10.7498/aps.55.3677
计量
  • 文章访问数:  9727
  • PDF下载量:  709
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-23
  • 修回日期:  2012-06-18
  • 刊出日期:  2012-11-05

/

返回文章
返回
Baidu
map