搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微秒脉冲电场下Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3陶瓷击穿过程电阻变化规律

刘艺 杨佳 李兴 谷伟 高志鹏

引用本文:
Citation:

微秒脉冲电场下Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3陶瓷击穿过程电阻变化规律

刘艺, 杨佳, 李兴, 谷伟, 高志鹏

Resistance of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 under high voltage microsecond pulse induced breakdown

Liu Yi, Yang Jia, Li Xing, Gu Wei, Gao Zhi-Peng
PDF
导出引用
  • 陶瓷作为应用非常广泛的一种材料,其电击穿问题一直是研究的重点和热点.由于击穿过程涉及热、光、电多场耦合效应,目前还没有一个普适的模型能够解释陶瓷击穿问题.针对此问题进行分析,实验中采用脉冲高压发生装置击穿陶瓷,通过对陶瓷击穿过程中等效电阻的研究,揭示了PZT95/5陶瓷样品体击穿和沿面闪络形成过程的异同.结果显示,在两种击穿模式下,陶瓷样品内部均会在40 ns左右形成导电通道,陶瓷等效电阻急剧下降至105 量级;然后体击穿与沿面闪络的导电通道以不同的速率继续扩展;电阻减小速率与导电通道上载流子的浓度有关,二者的等效电阻以不同速率减小,直至导电通道达到稳定.
    Ferroelectric ceramics have been widely used in lots of fields, such as mechanical-electric transducer, ferroelectric memory, and energy storage devices. The dielectric breakdown process of ferroelectric ceramic has received much attention for years, due to the fact that this issue is critical in many electrical applications. Though great efforts have been made, the mechanism of dielectric breakdown is still under debate. The reason is that the electrical breakdown is a complex process related to electrical, thermal, and light effects. In the present work, we investigate the breakdown process of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3(PZT95/5) ceramic, which is a kind of typical ferroelectric ceramic working in the high voltage environments. The high voltage pulse generator is used in the breakdown experiments to apply a square pulsed voltage with an amplitude of 10 kV and a width of 7 s. The resistivity change in the breakdown process is recorded by the high-frequency oscillograph in nano-second. The results show that there are two different breakdown types for our sample, i.e. body-breakdown and flashover. To better understand the breakdown mechanism of the PZT95/5 ceramic, the formation of the conductive channel in ceramic in the process is investigated by comparing the resistivity development in body-breakdown and flashover processes. The development of the conductive channel formation can be divided into three steps in body-breakdown. In the first step that lasts for the first 40 ns of breakdown, the conductive channel starts forming, with the equivalent resistance sharply decreasing to about 105 in the mean time. Then, i.e. in the second step, conductive path grows into a stable one with the equivalent resistance decreasing to the magneitude of about 102 . The resistance decreases slowly to about 130 in the third step, which means that the conductive channel is completely formed. The channel formation of flashover can also be divided into three steps. The first step is similar to that of body-breakdown, with the equivalent resistance decreasing to about 105 in about 40 ns. In the second step of flashover, the conductive path keeps growing into a stable one with the equivalent resistance decreasing to 102 , but with a different resistance changing rate from that in body-breakdown, and the resistance decreases slowly to about 20 in the end. Different behavior between the body-breakdown and the surface flashover can be explained by different carrier densities on the conductive paths in the two breakdown processes. In the body-breakdown, the carrier density in the conductive channel is higher than that in the surface flashover, which improves the electron transfer and reduces the resistance. This may explain the reason why the channel formation in body-breakdown is faster than in flashover. This study is helpful for further materials design and applications.
      Corresponding author: Yang Jia, whuyj168@126.com;z.p.gao@foxmail.com ; Gao Zhi-Peng, whuyj168@126.com;z.p.gao@foxmail.com
    • Funds: Project supported by the Science and Technology Foundation of National Key Laboratory of Shock Wave and Detonation Physics (Grant No. 2016Z-04).
    [1]

    Farouk A M 2014 High Voltage Engineering (Boca Raton: CRC press) pp299-349

    [2]

    Hemmert D, Holt S, Krile J 2007 Proceedings of 10th Annual Directed Energy Symposium Huntsville, USA, November 5-8, 2007 p5

    [3]

    Matsushima H, Okino H, Mochizuki K, Yamada R 2016 J. Appl. Phys. 119 154506

    [4]

    Kim S C, Heo H, Moon C, Nam S H 2016 IEEE Trans. Plasma Sci. 44 687

    [5]

    Du J F, Liu D, Bai Z, Yu Q 2016 Jpn. J. Appl. Phys. 55 054301

    [6]

    Shkuratov S I, Talantsev E F, Menon L, Temkin H, Baird J 2004 Rev. Sci. Instrum. 75 2766

    [7]

    Forster E O 1990 J. Phys. D Appl. Phys. 23 1507

    [8]

    Whitehead S 1953 Dielectric Breakdown of Solids (Oxford: Clarendon Press) pp37-54

    [9]

    Tu D M, Wang X S 1993 Acad. J. Xi'an Jiaotong Univ. 27 33 (in Chinese) [屠德民, 王新生 1993 西安交通大学学报 27 33]

    [10]

    Qu Y F 2007 Physical Behavior of Functional Ceramics (Beijing: Chemical Industry Press) pp107-118 (in Chinese) [曲远方 2007 功能陶瓷的物理性能 (北京: 化学工业出版社) 第107-118页]

    [11]

    Wang Y L 2003 Properties and Applications of Functional Ceramics (Beijing: Science Press) pp146-154 (in Chinese) [王永龄 2003功能陶瓷性能与应用(北京: 科学出版社) 第146-154页]

    [12]

    Han S M, Huh C S 2016 IEEE Trans. Plasma Sci. 44 1429

    [13]

    Hu Y H, Yao H Y, Yu Z J, Wang Y Z 2016 Rare Metal Mat. Eng. 45 571

    [14]

    Du J M, Zhang Y, Zhang F P, He H L, Wang H Y 2006 Acta Phys. Sin. 55 2584 (in Chinese) [杜金梅, 张毅, 张福平, 贺红亮, 王海晏 2006 55 2584]

    [15]

    Lan C F, Nie H C, Chen X F, Wang J X, Wang G S, Dong X L, Liu Y S, He H L 2013 J. Inorg. Mater. 28 503 (in Chinese) [兰春锋, 聂恒昌, 陈学锋, 王军霞, 王根水, 董显林, 刘雨生, 贺红亮 2013 无机材料学报 28 503]

    [16]

    Hall D A, Evans J D S, Covey-Crump S J, Holloway R F, Oliver E C, Moria T, Withers P J 2010 Acta Mater. 58 6584

    [17]

    Wang J X, Wang J, Yang S Y, Bian L 2009 J. Lanzhou Univ. Technol. 35 22 (in Chinese) [王军霞, 王进, 杨世源, 边亮 2009 兰州理工大学学报 35 22]

    [18]

    Lysne P C 1977 J. Appl. Phys. 48 4565

    [19]

    Wen D Y, Lin Q W 1997 Detonation and Shock Waves 3 27 (in Chinese) [温殿英, 林其文 1997 爆轰波与冲击波 3 27]

    [20]

    Jiang Y X, Wang S Z, He H L 2014 Chin. J. High Pressure Phys. 28 680 (in Chinese) [蒋一萱, 王省哲, 贺红亮 2014 高压 28 680]

    [21]

    Zhang F P, Du J M, Liu Y S, Liu Y, Liu G M, He H L 2011 Acta Phys. Sin. 60 057701 (in Chinese) [张福平, 杜金梅, 刘雨生, 刘艺, 刘高旻, 贺红亮 2011 60 057701]

    [22]

    Pakhotin V A, Zakrevskii V A, Sudar N T 2015 Tech. Phys. 60 1149

    [23]

    He L, Ji Y Z, Liu G C 2007 J. Changchun Univ. 28 165 (in Chinese) [贺莉, 纪跃芝, 刘国彩 2007长春工业大学学报 28 165]

    [24]

    Zhang F H 2008 Ph. D. Dissertation (Xi'an: Shaanxi University of Science Technology) (in Chinese) [张方晖 2008 博士学位论文 (西安: 陕西科技大学)]

    [25]

    Lu Q M, Yang W H, Liu W D 2004 Nucl. Fusion Plasma Phys. 24 33

    [26]

    Slutsker A I, Hilyarov V L 2011 Phys. Solid State 53 1325

  • [1]

    Farouk A M 2014 High Voltage Engineering (Boca Raton: CRC press) pp299-349

    [2]

    Hemmert D, Holt S, Krile J 2007 Proceedings of 10th Annual Directed Energy Symposium Huntsville, USA, November 5-8, 2007 p5

    [3]

    Matsushima H, Okino H, Mochizuki K, Yamada R 2016 J. Appl. Phys. 119 154506

    [4]

    Kim S C, Heo H, Moon C, Nam S H 2016 IEEE Trans. Plasma Sci. 44 687

    [5]

    Du J F, Liu D, Bai Z, Yu Q 2016 Jpn. J. Appl. Phys. 55 054301

    [6]

    Shkuratov S I, Talantsev E F, Menon L, Temkin H, Baird J 2004 Rev. Sci. Instrum. 75 2766

    [7]

    Forster E O 1990 J. Phys. D Appl. Phys. 23 1507

    [8]

    Whitehead S 1953 Dielectric Breakdown of Solids (Oxford: Clarendon Press) pp37-54

    [9]

    Tu D M, Wang X S 1993 Acad. J. Xi'an Jiaotong Univ. 27 33 (in Chinese) [屠德民, 王新生 1993 西安交通大学学报 27 33]

    [10]

    Qu Y F 2007 Physical Behavior of Functional Ceramics (Beijing: Chemical Industry Press) pp107-118 (in Chinese) [曲远方 2007 功能陶瓷的物理性能 (北京: 化学工业出版社) 第107-118页]

    [11]

    Wang Y L 2003 Properties and Applications of Functional Ceramics (Beijing: Science Press) pp146-154 (in Chinese) [王永龄 2003功能陶瓷性能与应用(北京: 科学出版社) 第146-154页]

    [12]

    Han S M, Huh C S 2016 IEEE Trans. Plasma Sci. 44 1429

    [13]

    Hu Y H, Yao H Y, Yu Z J, Wang Y Z 2016 Rare Metal Mat. Eng. 45 571

    [14]

    Du J M, Zhang Y, Zhang F P, He H L, Wang H Y 2006 Acta Phys. Sin. 55 2584 (in Chinese) [杜金梅, 张毅, 张福平, 贺红亮, 王海晏 2006 55 2584]

    [15]

    Lan C F, Nie H C, Chen X F, Wang J X, Wang G S, Dong X L, Liu Y S, He H L 2013 J. Inorg. Mater. 28 503 (in Chinese) [兰春锋, 聂恒昌, 陈学锋, 王军霞, 王根水, 董显林, 刘雨生, 贺红亮 2013 无机材料学报 28 503]

    [16]

    Hall D A, Evans J D S, Covey-Crump S J, Holloway R F, Oliver E C, Moria T, Withers P J 2010 Acta Mater. 58 6584

    [17]

    Wang J X, Wang J, Yang S Y, Bian L 2009 J. Lanzhou Univ. Technol. 35 22 (in Chinese) [王军霞, 王进, 杨世源, 边亮 2009 兰州理工大学学报 35 22]

    [18]

    Lysne P C 1977 J. Appl. Phys. 48 4565

    [19]

    Wen D Y, Lin Q W 1997 Detonation and Shock Waves 3 27 (in Chinese) [温殿英, 林其文 1997 爆轰波与冲击波 3 27]

    [20]

    Jiang Y X, Wang S Z, He H L 2014 Chin. J. High Pressure Phys. 28 680 (in Chinese) [蒋一萱, 王省哲, 贺红亮 2014 高压 28 680]

    [21]

    Zhang F P, Du J M, Liu Y S, Liu Y, Liu G M, He H L 2011 Acta Phys. Sin. 60 057701 (in Chinese) [张福平, 杜金梅, 刘雨生, 刘艺, 刘高旻, 贺红亮 2011 60 057701]

    [22]

    Pakhotin V A, Zakrevskii V A, Sudar N T 2015 Tech. Phys. 60 1149

    [23]

    He L, Ji Y Z, Liu G C 2007 J. Changchun Univ. 28 165 (in Chinese) [贺莉, 纪跃芝, 刘国彩 2007长春工业大学学报 28 165]

    [24]

    Zhang F H 2008 Ph. D. Dissertation (Xi'an: Shaanxi University of Science Technology) (in Chinese) [张方晖 2008 博士学位论文 (西安: 陕西科技大学)]

    [25]

    Lu Q M, Yang W H, Liu W D 2004 Nucl. Fusion Plasma Phys. 24 33

    [26]

    Slutsker A I, Hilyarov V L 2011 Phys. Solid State 53 1325

  • [1] 郑培超, 李晓娟, 王金梅, 郑爽, 赵怀冬. 再加热双脉冲激光诱导击穿光谱技术对黄连中Cu和Pb的定量分析.  , 2019, 68(12): 125202. doi: 10.7498/aps.68.20190148
    [2] 王洪广, 柳鹏飞, 张建威, 李永东, 曹亦兵, 孙钧. 收集极释气对相对论返波管影响的粒子模拟.  , 2019, 68(18): 185203. doi: 10.7498/aps.68.20190554
    [3] 谭志中, 张庆华. 基于递推-变换方法计算圆柱面网络的等效电阻及复阻抗.  , 2017, 66(7): 070501. doi: 10.7498/aps.66.070501
    [4] 吴宜青, 刘津, 莫欣欣, 孙通, 刘木华. 共轴双脉冲激光诱导击穿光谱结合双谱线内标法定量分析植物油中的铬.  , 2017, 66(5): 054206. doi: 10.7498/aps.66.054206
    [5] 蒋招绣, 王永刚, 聂恒昌, 刘雨生. 极化状态与方向对单轴压缩下Pb(Zr0.95Ti0.05)O3铁电陶瓷畴变与相变行为的影响.  , 2017, 66(2): 024601. doi: 10.7498/aps.66.024601
    [6] 伍友成, 刘高旻, 戴文峰, 高志鹏, 贺红亮, 郝世荣, 邓建军. 冲击波作用下Pb(Zr0.95Ti0.05)O3铁电陶瓷去极化后电阻率动态特性.  , 2017, 66(4): 047201. doi: 10.7498/aps.66.047201
    [7] 张力, 林志宇, 罗俊, 王树龙, 张进成, 郝跃, 戴扬, 陈大正, 郭立新. 具有p-GaN岛状埋层耐压结构的横向AlGaN/GaN高电子迁移率晶体管.  , 2017, 66(24): 247302. doi: 10.7498/aps.66.247302
    [8] 岳姗, 刘兴男, 时振刚. 高压氦气平行极板击穿电压实验研究.  , 2015, 64(10): 105101. doi: 10.7498/aps.64.105101
    [9] 蒋招绣, 辛铭之, 申海艇, 王永刚, 聂恒昌, 刘雨生. 多孔未极化Pb(Zr0.95Ti0.05)O3铁电陶瓷单轴压缩力学响应与相变.  , 2015, 64(13): 134601. doi: 10.7498/aps.64.134601
    [10] 李爽, 常超, 王建国, 刘彦升, 朱梦, 郭乐田, 谢佳玲. 横磁模下介质表面二次电子倍增的抑制.  , 2015, 64(13): 137701. doi: 10.7498/aps.64.137701
    [11] 陈添兵, 姚明印, 刘木华, 林永增, 黎文兵, 郑美兰, 周华茂. 基于多元定标法的脐橙Pb元素激光诱导击穿光谱定量分析.  , 2014, 63(10): 104213. doi: 10.7498/aps.63.104213
    [12] 周东方, 余道杰, 杨建宏, 侯德亭, 夏蔚, 胡涛, 林竞羽, 饶育萍, 魏进进, 张德伟, 王利萍. 基于混合大气传输模型的单脉冲高功率微波大气击穿理论与实验研究.  , 2013, 62(1): 014207. doi: 10.7498/aps.62.014207
    [13] 杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全. 土壤中重金属元素的双脉冲激光诱导击穿光谱研究.  , 2013, 62(4): 045202. doi: 10.7498/aps.62.045202
    [14] 李世文, 冯国英, 李玮, 韩敬华, 周晟阳, 殷家家, 杨超, 周寿桓. 高压击穿铜丝物相研究.  , 2012, 61(22): 225206. doi: 10.7498/aps.61.225206
    [15] 冯宁博, 谷岩, 刘雨生, 聂恒昌, 陈学锋, 王根水, 贺红亮, 董显林. 冲击波加载下孔隙率对Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 铁电陶瓷去极化性能的影响.  , 2010, 59(12): 8897-8902. doi: 10.7498/aps.59.8897
    [16] 施卫, 田立强, 王馨梅, 徐鸣, 马德明, 周良骥, 刘宏伟, 谢卫平. 高压超大电流光电导开关及其击穿特性研究.  , 2009, 58(2): 1219-1223. doi: 10.7498/aps.58.1219
    [17] 乔 明, 张 波, 李肇基, 方 健, 周贤达. 背栅效应对SOI横向高压器件击穿特性的影响.  , 2007, 56(7): 3990-3995. doi: 10.7498/aps.56.3990
    [18] 李 潇, 张海英, 尹军舰, 刘 亮, 徐静波, 黎 明, 叶甜春, 龚 敏. 磷化铟复合沟道高电子迁移率晶体管击穿特性研究.  , 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [19] 曾燕伟, 薛万荣, 傅国飞, 周衡南. (Pb0.85Sm0.10)(Ti0.98Mn0.02)O3压电陶瓷超高各向异性机电耦合性能的X射线衍射研究.  , 1991, 40(1): 70-77. doi: 10.7498/aps.40.70
    [20] 赵毓玲, 姚玉书, 王文魁. 钙钛石结构Pb(Zn1/3Nb2/3)O3的高温高压合成.  , 1978, 27(2): 224-225. doi: 10.7498/aps.27.224
计量
  • 文章访问数:  5205
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-12
  • 修回日期:  2017-01-23
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map