-
本文回顾了石墨烯霍尔传感器的相关研究工作.通过改善石墨烯生长转移和霍尔元件的微加工工艺,石墨烯霍尔元件和霍尔集成电路都展示出超越传统霍尔传感器的优异性能.石墨烯霍尔元件的灵敏度、分辨率、线性度和温度稳定性等重要指标都优于传统商用霍尔元件.通过开发一套钝化工艺,霍尔元件的稳定性有了明显提升.结合石墨烯材料的特点,展示了石墨烯在柔性磁传感和多功能传感领域的新颖应用.此外,成功实现了石墨烯/硅互补型金属-氧化物-半导体(CMOS)混合霍尔集成电路,并进行了应用展示.通过发展一套低温加工工艺(不超过180 ℃),将石墨烯霍尔元件制备在硅基CMOS芯片的钝化层上,从而与硅基CMOS电路实现了单片集成.本文的研究结果表明石墨烯在霍尔磁探测方向拥有重大的性能优势,在产业化应用中有巨大发展潜力.The state-of-the-art graphene Hall elements and integrated circuits are reviewed. By optimizing the growth and transfer of graphene and the micro-fabrication process of Hall sensor, graphene Hall elements and integrated circuits outperform conventional Hall sensors in many aspects. Graphene Hall elements exhibit better sensitivities, resolutions, linearities and temperature stabilities than commercialized Hall elements. Through developing a set of passivation processes, the stabilities of graphene Hall elements are improved. Besides, the flexible magnetic sensing and multifunctional detection applications based on graphene are demonstrated. In addition, graphene/silicon hybrid Hall integrated circuits are realized. By developing a set of low temperature processes (below 180℃), graphene Hall elements are monolithically integrated onto the passivation layer of silicon complementary metal oxide semiconductor chip. This work demonstrates that graphene possesses significant performance advantages in Hall magnetic sensing and potentially practical applications.
-
Keywords:
- graphene /
- Hall sensors /
- Hall elements /
- Hall integrated circuits
[1] Xu H, Zhang Z, Shi R, Liu H, Wang Z, Wang S, Peng L 2013 Sci. Rep. UK 3 1207
[2] Popovic R S 2004 Hall Effect Devices (2nd Ed.) (London: IOP Publishing)
[3] Hara T, Mihara M, Toyoda N, Zama M 1982 IEEE Trans. Electron Dev. 29 78
[4] Shibasaki I 1997 J. Cryst. Growth 175 13
[5] Berus T, Oszwaldowski M, Grabowski J 2004 Sensor. Actuat. A: Phys. 116 75
[6] Liu C S, Kou B M, Zhong L 2009 Practical Handbook of Holzer Sensors (Vol. 1) (Beijing: China Electric Power Press) pp100-250 (in Chinese) [刘畅生, 寇宝明, 钟龙 2009 霍尔传感器实用手册(第一版) (北京: 中国电力出版社) 第100250页]
[7] Xu H, Huang L, Zhang Z, Chen B, Zhong H, Peng L 2013 Appl. Phys. Lett. 103 112405
[8] Huang L, Zhang Z, Chen B, Ma X, Zhong H, Peng L 2014 Appl. Phys. Lett. 104 183106
[9] Zhang Y, Mendez E E, Du X 2011 ACS Nano 5 8124
[10] Kunets V P, Black W T, Mazur Y I, Guzun D, Salamo G J, Goel N, Mishima T D, Deen D A, Murphy S Q, Santos M B 2005 J. Appl. Phys. 98 014506
[11] Kazakova O, Gallop J C, Cox D C, Brown E, Cuenat A, Suzuki K 2008 IEEE Trans. Magn. 44 4480
[12] Kunets V P, Dobbert J, Mazur Y I, Salamo G J, Mueller U, Masselink W T, Kostial H, Wiebicke E 2008 J. Mater. Sci.: Mater. El. 19 776
[13] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351
[14] Meng Y, Zhao Y, Hu C, Cheng H, Hu Y, Zhang Z, Shi G, Qu L 2013 Adv. Mater. 25 2326
[15] Han T, Lee Y, Choi M, Woo S, Bae S, Hong B H, Ahn J, Lee T 2012 Nat. Photon. 6 105
[16] Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D, Ishigami M 2008 Nat. Phys. 4 377
[17] Fang T, Konar A, Xing H, Jena D 2007 Appl. Phys. Lett. 91 092109
[18] Huang L, Xu H, Zhang Z, Chen C, Jiang J, Ma X, Chen B, Li Z, Zhong H, Peng L 2014 Sci. Rep. 4 5548
[19] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[20] Hummers W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339
[21] de Heer W A, Berger C, Wu X, First P N, Conrad E H, Li X, Li T, Sprinkle M, Hass J, Sadowski M L, Potemski M, Martinez G 2007 Solid State Commun. 143 92
[22] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J, Kim P, Choi J, Hong B H 2009 Nature 457 706
[23] Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L, Zhang Z, Fu Q, Peng L, Bao X, Cheng H 2012 Nat. Commun. 3 699
[24] Shi R, Xu H, Chen B, Zhang Z, Peng L 2013 Appl. Phys. Lett. 102 113102
[25] Chen B, Huang H, Ma X, Huang L, Zhang Z, Peng L 2014 Nanoscale 6 15255
[26] Bando M, Ohashi T, Dede M, Akram R, Oral A, Park S Y, Shibasaki I, Handa H, Sandhu A 2009 J. Appl. Phys. 105 07E909
[27] Tang C, Li M, Li L J, Chi C C, Chen J C 2011 Appl. Phys. Lett. 99 112107
[28] Panchal V, Cedergren K, Yakimova R, Tzalenchuk A, Kubatkin S, Kazakova O 2012 J. Appl. Phys. 111 07E509
[29] Panchal V, Iglesias-Freire O, Lartsev A, Yakimova R, Asenjo A, Kazakova O 2013 IEEE Trans. Magn. 49 3520
[30] Chen B, Huang L, Ma X, Dong L, Zhang Z, Peng L 2015 Carbon 94 585
[31] Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee S K 2009 Appl. Phys. Lett. 94 062107
[32] Wang Z, Shaygan M, Otto M, Schall D, Neumaier D 2016 Nanoscale 8 7683
[33] Huang L, Zhang Z, Chen B, Peng L 2015 IEEE International Electron Devices Meeting (IEDM) Washington D. C., USA, December 6-10, 2015 33.5
[34] Novoselov K S, Fal'Ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192
[35] Huang L, Zhang Z, Li Z, Chen B, Ma X, Dong L, Peng L 2015 Acs Appl. Mater. Inter. 7 9581
[36] Lee J, Tao L, Parrish K N, Hao Y, Ruoff R S, Akinwande D 2012 Appl. Phys. Lett. 101 252109
[37] Lee K, Qazi M, Kong J, Chandrakasan A P 2010 IEEE Trans. Electron Dev. 57 3418
[38] Chen X, Akinwande D, Lee K, Close G F, Yasuda S, Paul B C, Fujita S, Kong J, Wong H S P 2010 IEEE Trans. Electron Dev. 57 3137
[39] Lee K, Park H, Kong J, Chandrakasan A P 2013 IEEE Trans. Electron Dev. 60 383
-
[1] Xu H, Zhang Z, Shi R, Liu H, Wang Z, Wang S, Peng L 2013 Sci. Rep. UK 3 1207
[2] Popovic R S 2004 Hall Effect Devices (2nd Ed.) (London: IOP Publishing)
[3] Hara T, Mihara M, Toyoda N, Zama M 1982 IEEE Trans. Electron Dev. 29 78
[4] Shibasaki I 1997 J. Cryst. Growth 175 13
[5] Berus T, Oszwaldowski M, Grabowski J 2004 Sensor. Actuat. A: Phys. 116 75
[6] Liu C S, Kou B M, Zhong L 2009 Practical Handbook of Holzer Sensors (Vol. 1) (Beijing: China Electric Power Press) pp100-250 (in Chinese) [刘畅生, 寇宝明, 钟龙 2009 霍尔传感器实用手册(第一版) (北京: 中国电力出版社) 第100250页]
[7] Xu H, Huang L, Zhang Z, Chen B, Zhong H, Peng L 2013 Appl. Phys. Lett. 103 112405
[8] Huang L, Zhang Z, Chen B, Ma X, Zhong H, Peng L 2014 Appl. Phys. Lett. 104 183106
[9] Zhang Y, Mendez E E, Du X 2011 ACS Nano 5 8124
[10] Kunets V P, Black W T, Mazur Y I, Guzun D, Salamo G J, Goel N, Mishima T D, Deen D A, Murphy S Q, Santos M B 2005 J. Appl. Phys. 98 014506
[11] Kazakova O, Gallop J C, Cox D C, Brown E, Cuenat A, Suzuki K 2008 IEEE Trans. Magn. 44 4480
[12] Kunets V P, Dobbert J, Mazur Y I, Salamo G J, Mueller U, Masselink W T, Kostial H, Wiebicke E 2008 J. Mater. Sci.: Mater. El. 19 776
[13] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351
[14] Meng Y, Zhao Y, Hu C, Cheng H, Hu Y, Zhang Z, Shi G, Qu L 2013 Adv. Mater. 25 2326
[15] Han T, Lee Y, Choi M, Woo S, Bae S, Hong B H, Ahn J, Lee T 2012 Nat. Photon. 6 105
[16] Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D, Ishigami M 2008 Nat. Phys. 4 377
[17] Fang T, Konar A, Xing H, Jena D 2007 Appl. Phys. Lett. 91 092109
[18] Huang L, Xu H, Zhang Z, Chen C, Jiang J, Ma X, Chen B, Li Z, Zhong H, Peng L 2014 Sci. Rep. 4 5548
[19] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[20] Hummers W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339
[21] de Heer W A, Berger C, Wu X, First P N, Conrad E H, Li X, Li T, Sprinkle M, Hass J, Sadowski M L, Potemski M, Martinez G 2007 Solid State Commun. 143 92
[22] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J, Kim P, Choi J, Hong B H 2009 Nature 457 706
[23] Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L, Zhang Z, Fu Q, Peng L, Bao X, Cheng H 2012 Nat. Commun. 3 699
[24] Shi R, Xu H, Chen B, Zhang Z, Peng L 2013 Appl. Phys. Lett. 102 113102
[25] Chen B, Huang H, Ma X, Huang L, Zhang Z, Peng L 2014 Nanoscale 6 15255
[26] Bando M, Ohashi T, Dede M, Akram R, Oral A, Park S Y, Shibasaki I, Handa H, Sandhu A 2009 J. Appl. Phys. 105 07E909
[27] Tang C, Li M, Li L J, Chi C C, Chen J C 2011 Appl. Phys. Lett. 99 112107
[28] Panchal V, Cedergren K, Yakimova R, Tzalenchuk A, Kubatkin S, Kazakova O 2012 J. Appl. Phys. 111 07E509
[29] Panchal V, Iglesias-Freire O, Lartsev A, Yakimova R, Asenjo A, Kazakova O 2013 IEEE Trans. Magn. 49 3520
[30] Chen B, Huang L, Ma X, Dong L, Zhang Z, Peng L 2015 Carbon 94 585
[31] Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee S K 2009 Appl. Phys. Lett. 94 062107
[32] Wang Z, Shaygan M, Otto M, Schall D, Neumaier D 2016 Nanoscale 8 7683
[33] Huang L, Zhang Z, Chen B, Peng L 2015 IEEE International Electron Devices Meeting (IEDM) Washington D. C., USA, December 6-10, 2015 33.5
[34] Novoselov K S, Fal'Ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192
[35] Huang L, Zhang Z, Li Z, Chen B, Ma X, Dong L, Peng L 2015 Acs Appl. Mater. Inter. 7 9581
[36] Lee J, Tao L, Parrish K N, Hao Y, Ruoff R S, Akinwande D 2012 Appl. Phys. Lett. 101 252109
[37] Lee K, Qazi M, Kong J, Chandrakasan A P 2010 IEEE Trans. Electron Dev. 57 3418
[38] Chen X, Akinwande D, Lee K, Close G F, Yasuda S, Paul B C, Fujita S, Kong J, Wong H S P 2010 IEEE Trans. Electron Dev. 57 3137
[39] Lee K, Park H, Kong J, Chandrakasan A P 2013 IEEE Trans. Electron Dev. 60 383
计量
- 文章访问数: 9918
- PDF下载量: 459
- 被引次数: 0