Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Three-dimensional magnetization dynamics in majority gate studied by using multiferroic nanomagnet

Wei Bo Cai Li Yang Xiao-Kuo Li Cheng

Citation:

Three-dimensional magnetization dynamics in majority gate studied by using multiferroic nanomagnet

Wei Bo, Cai Li, Yang Xiao-Kuo, Li Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The scaling of traditional complementary metal oxide semiconductor (CMOS) device is reaching its physical limit, and alternative emerging devices are being explored as possible CMOS substitutes. One of the most promising device technologies is nano-magnetic logic (NML), which is an energy-efficient computing paradigm. The inherent nonvolatility and low energy consumption make NML device possess wide application perspectives. The basic element of multiferroic NML is a sub-100 nm sized single domain magnet. Generally, the x-y plane determines the in-plane dimension, while the z direction indicates the thickness of nanomagnet. Classical binary logic states 0 and 1 are encoded in two stable magnetization orientations along the easy axis (major axis) of the elliptical nanomagnet, while the hard axis (minor axis) refers to null logic. In order to propagate logic bits between the neighbor nanomagnets, one requires a clock that periodically flips every magnet's magnetization along the hard axis simultaneously, and the dipole-dipole interaction between the neighbors will force the magnet into the correct orientation along the easy axis, and thus the logic bit propagates unidirectionally. In multiferroic NML, the majority gate is a basic element of nanomagnet logcal circuit. In this paper, the three-dimensional switching dynamic model of a multiferroic nanomagnetic majority gate is established, and its magnetization dynamics is simulated by solving the Landau-Lifshitz-Gilbert equation with considering the thermal fluctuation effects. The majority gate is implemented with dipole-coupled two-phase (magnetostrictive/piezoelectric) multiferroic elements and is simulated by using different strain clocks and changing the input. It is found that the majority gate works efficiently and correctly when receiving new input. It is also found that the optimal time interval of stress releasing between central nanomagnet and output nanomagnet is 0.1-0.2 ns. Removing stress earlier will reduce the success rate of the majority gate operation while the work frequency increases. The reason behind the phenomenon may be that removing stress earlier results in weak dipole-coupled interaction, which cannot overcome the shape anisotropy. These findings are beneficial to the design of multiferroic logic circuit.
      Corresponding author: Cai Li, qianglicai@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11405270) and the Scientific Research Foundation for Postdoctor of Air Force Engineering University, China (Grant Nos. 2015BSKYQD03, 2016KYMZ06).
    [1]

    Cowburn R P, Welland M E 2000 Science 287 1466

    [2]

    Csaba G, Imre A, Bernstein G H, Porod W, Metlushko V 2002 IEEE Trans. Nanotechnol. 1 209

    [3]

    Vacca M, Graziano M, Crescenzo L D, Chiolerio A, Lamberti A, Balma D, Canavese C, Celegato F, Enrico E, Tiberto P, Boarino L, Zamboni M 2014 IEEE Trans. Nanotechnol. 13 963

    [4]

    Imre A, Csaba G, Ji L, Orlov A, Bernstein G H, Porod W 2006 Science 311 205

    [5]

    Niemier M T, Bernstein G H, Dingler A, Hu X S, Kurtz S, Liu S, Nahas J, Porod W, Siddiq M, Varga E 2011 J. Phys.: Condens. Matter 23 493202

    [6]

    Yang X K, Zhang B, Cui H Q, Li W W, Wang S 2016 Acta Phys. Sin. 65 237502 (in Chinese) [杨晓阔, 张斌, 崔焕卿, 李伟伟, 王森 2016 65 237502]

    [7]

    Tiercelin N, Dusch Y, Klimov A, Giordano S, Preobrazhensky V, Pernod P 2011 Appl. Phys. Lett. 99 192507

    [8]

    Atulasimha J, Bandyopadhyay S 2010 Appl. Phys. Lett. 97 173105

    [9]

    Zhang N, Zhang B, Yang M Y, Cai K M, Sheng Y, Li Y C, Deng Y C, Wang K Y 2017 Acta Phys. Sin. 66 027501 (in Chinese) [张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友 2017 66 027501]

    [10]

    Alam M T, Kurtz S J, Siddiq M A J, Niemier M T, Bernstein G H, Hu X S, Porod W 2012 IEEE Trans. Nanotechnol. 11 273

    [11]

    Zhang M L, Cai L, Yang X K, Qing T, Liu X Q, Feng C W, Wang S 2014 Acta Phys. Sin. 63 227503 (in Chinese) [张明亮, 蔡理, 杨晓阔, 秦涛, 刘小强, 冯朝文, 王森 2014 63 227503]

    [12]

    Bhowmik D, You L, Salahuddin S 2014 Nat. Nanotechnol. 9 59

    [13]

    Ralph D C, Stiles M D 2008 J. Magn. Magn. Mater. 320 1190

    [14]

    Fashami M S, Roy K, Atulasimha J, Bandyopadhyay S 2011 Nanotechnology 22 155201

    [15]

    Souza N D, Fashami M S, Bandyopadhyay S, Atulasimha J 2016 Nano Lett. 16 1609

    [16]

    Biswas A K, Ahmad H, Atulasimha J, Bandyopadhyay S 2017 Nano Lett. 17 3478

    [17]

    Yilmaz Y, Mazumder P 2013 IEEE Trans. VLSI Syst. 21 1181

    [18]

    Yang X K, Cai L, Kang Q, Bai P, Zhao X H, Feng C W, Zhang L S 2011 Acta Phys. Sin. 60 098503 (in Chinese) [杨晓阔, 蔡理, 康强, 柏鹏, 赵晓辉, 冯朝文, 张立森 2011 60 098503]

    [19]

    Chikazumi S 1964 Physics of Magnetism (New York: Wiley) p25

    [20]

    Fidler J, Schrefl T 2000 J. Phys. D: Appl. Phys. 33 R135

    [21]

    Brown W F 1963 Phys. Rev. 130 1677

    [22]

    Fashami M S, Roy K, Atulasimha J, Bandyopadyay S 2011 Nanotechnology 22 309501

  • [1]

    Cowburn R P, Welland M E 2000 Science 287 1466

    [2]

    Csaba G, Imre A, Bernstein G H, Porod W, Metlushko V 2002 IEEE Trans. Nanotechnol. 1 209

    [3]

    Vacca M, Graziano M, Crescenzo L D, Chiolerio A, Lamberti A, Balma D, Canavese C, Celegato F, Enrico E, Tiberto P, Boarino L, Zamboni M 2014 IEEE Trans. Nanotechnol. 13 963

    [4]

    Imre A, Csaba G, Ji L, Orlov A, Bernstein G H, Porod W 2006 Science 311 205

    [5]

    Niemier M T, Bernstein G H, Dingler A, Hu X S, Kurtz S, Liu S, Nahas J, Porod W, Siddiq M, Varga E 2011 J. Phys.: Condens. Matter 23 493202

    [6]

    Yang X K, Zhang B, Cui H Q, Li W W, Wang S 2016 Acta Phys. Sin. 65 237502 (in Chinese) [杨晓阔, 张斌, 崔焕卿, 李伟伟, 王森 2016 65 237502]

    [7]

    Tiercelin N, Dusch Y, Klimov A, Giordano S, Preobrazhensky V, Pernod P 2011 Appl. Phys. Lett. 99 192507

    [8]

    Atulasimha J, Bandyopadhyay S 2010 Appl. Phys. Lett. 97 173105

    [9]

    Zhang N, Zhang B, Yang M Y, Cai K M, Sheng Y, Li Y C, Deng Y C, Wang K Y 2017 Acta Phys. Sin. 66 027501 (in Chinese) [张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友 2017 66 027501]

    [10]

    Alam M T, Kurtz S J, Siddiq M A J, Niemier M T, Bernstein G H, Hu X S, Porod W 2012 IEEE Trans. Nanotechnol. 11 273

    [11]

    Zhang M L, Cai L, Yang X K, Qing T, Liu X Q, Feng C W, Wang S 2014 Acta Phys. Sin. 63 227503 (in Chinese) [张明亮, 蔡理, 杨晓阔, 秦涛, 刘小强, 冯朝文, 王森 2014 63 227503]

    [12]

    Bhowmik D, You L, Salahuddin S 2014 Nat. Nanotechnol. 9 59

    [13]

    Ralph D C, Stiles M D 2008 J. Magn. Magn. Mater. 320 1190

    [14]

    Fashami M S, Roy K, Atulasimha J, Bandyopadhyay S 2011 Nanotechnology 22 155201

    [15]

    Souza N D, Fashami M S, Bandyopadhyay S, Atulasimha J 2016 Nano Lett. 16 1609

    [16]

    Biswas A K, Ahmad H, Atulasimha J, Bandyopadhyay S 2017 Nano Lett. 17 3478

    [17]

    Yilmaz Y, Mazumder P 2013 IEEE Trans. VLSI Syst. 21 1181

    [18]

    Yang X K, Cai L, Kang Q, Bai P, Zhao X H, Feng C W, Zhang L S 2011 Acta Phys. Sin. 60 098503 (in Chinese) [杨晓阔, 蔡理, 康强, 柏鹏, 赵晓辉, 冯朝文, 张立森 2011 60 098503]

    [19]

    Chikazumi S 1964 Physics of Magnetism (New York: Wiley) p25

    [20]

    Fidler J, Schrefl T 2000 J. Phys. D: Appl. Phys. 33 R135

    [21]

    Brown W F 1963 Phys. Rev. 130 1677

    [22]

    Fashami M S, Roy K, Atulasimha J, Bandyopadyay S 2011 Nanotechnology 22 309501

  • [1] Chen Long, Tan Cong-Qi, Cui Zuo-Jun, Duan Ping, An Yu-Hao, Chen Jun-Yu, Zhou Li-Na. Multi-ion magnetized sheath properties with non-extensive electron distribution. Acta Physica Sinica, 2024, 73(5): 055201. doi: 10.7498/aps.73.20231452
    [2] Xie Xiao-Jie, Sun Jun-Song, Qin Ji-Hong, Guo Huai-Ming. Pseudo-Landau levels of hexagonal lattice quantum antiferromagnets under bending strain. Acta Physica Sinica, 2024, 73(2): 020202. doi: 10.7498/aps.73.20231231
    [3] Xia Yong-Shun, Yang Xiao-Kuo, Dou Shu-Qing, Cui Huan-Qing, Wei Bo, Liang Bu-Jia, Yan Xu. Ultra-low power magneto-elastic analog-to-digital converter based on magnetic tunnel junctions and bicomponent multiferroic nanomagnet. Acta Physica Sinica, 2024, 73(13): 137502. doi: 10.7498/aps.73.20240129
    [4] Quan Dong-Xiao, Lü Xiao-Jie, Zhang Wen-Fei. Structure design and logical CNOT implementation of multi-logical-qubits surface code. Acta Physica Sinica, 2024, 73(4): 040304. doi: 10.7498/aps.73.20231138
    [5] Dou Shu-Qing, Yang Xiao-Kuo, Xia Yong-Shun, Yuan Jia-Hui, Cui Huan-Qing, Wei Bo, Bai Xin, Feng Chao-Wen. A nanomagnets majority logic gate based on heterogeneous multiferroic structure global strain clock. Acta Physica Sinica, 2023, 72(15): 157501. doi: 10.7498/aps.72.20230866
    [6] Shangguan Dan-Hua, Yan Wei-Hua, Wei Jun-Xia, Gao Zhi-Ming, Chen Yi-Bing, Ji Zhi-Cheng. Efficient Monte Carlo algorithm of time-dependent particle transport problem in multi-physics coupling calculation. Acta Physica Sinica, 2022, 71(9): 090501. doi: 10.7498/aps.71.20211474
    [7] Liu Teng, Lu Peng-Fei, Hu Bi-Ying, Wu Hao, Lao Qi-Feng, Bian Ji, Liu Yang, Zhu Feng, Luo Le. Phonon-mediated many-body quantum entanglement and logic gates in ion traps. Acta Physica Sinica, 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [8] Chen Ya-Bo, Yang Xiao-Kuo, Wei Bo, Wu Tong, Liu Jia-Hao, Zhang Ming-Liang, Cui Huan-Qing, Dong Dan-Na, Cai Li. Ferromagnetic resonance frequency and spin wave mode of asymmetric strip nanomagnet. Acta Physica Sinica, 2020, 69(5): 057501. doi: 10.7498/aps.69.20191622
    [9] Liu Jia-Hao,  Yang Xiao-Kuo,  Wei Bo,  Li Cheng,  Zhang Ming-Liang,  Li Chuang,  Dong Dan-Na. Modeling of stress-regulated AND (OR) logic gate based on flipping preference of tilted nanomagnet. Acta Physica Sinica, 2019, 68(1): 017501. doi: 10.7498/aps.68.20181621
    [10] Song Xiao, Gao Xing-Sen, Liu Jun-Ming. Electric field driven magnetic switching in nanoscale multiferroic heterostructures. Acta Physica Sinica, 2018, 67(15): 157512. doi: 10.7498/aps.67.20181219
    [11] Wang Sen, Cai Li, Cui Huan-Qing, Feng Chao-Wen, Wang Jun, Qi Kai. Switching characteristics of all spin logic devices based on Co and Permalloy nanomagnet. Acta Physica Sinica, 2016, 65(9): 098501. doi: 10.7498/aps.65.098501
    [12] Yang Xiao-Kuo, Zhang Bin, Cui Huan-Qing, Li Wei-Wei, Wang Sen. Magnetization dynamics in ferromagnetic coupling interconnect wire using multiferroic logic scheme. Acta Physica Sinica, 2016, 65(23): 237502. doi: 10.7498/aps.65.237502
    [13] Zhang Ming-Liang, Cai Li, Yang Xiao-Kuo, Qin Tao, Liu Xiao-Qiang, Feng Chao-Wen, Wang Sen. On-chip clocking for exchange-interaction-based nanomagnetic logic circuits. Acta Physica Sinica, 2014, 63(22): 227503. doi: 10.7498/aps.63.227503
    [14] Li Hui, Lin Peng, Zhang Chun-Xi. L2—L∞ control for leader-following coordination of second-order multi-agent systems. Acta Physica Sinica, 2009, 58(1): 158-164. doi: 10.7498/aps.58.158
    [15] Zhong Chong-Gui, Jiang Qing, Fang Jing-Huai, Jiang Xue-Fan, Luo Li-Jin. Electric-field-induced magnetization in 1-3 type multiferroic nanocomposite thin film. Acta Physica Sinica, 2009, 58(10): 7227-7234. doi: 10.7498/aps.58.7227
    [16] Liu Tian-Liang, Huang Hai-Jun. Multi-agent simulation on day-to-day route choice behavior. Acta Physica Sinica, 2007, 56(11): 6321-6325. doi: 10.7498/aps.56.6321
    [17] Ding Zhi-Bo, Yao Shu-De, Wang Kun, Cheng Kai. Characterization of crystal lattice constant and strain of GaN epilayers with different AlxGa1-xN and AlN buffer layers grown on Si(111). Acta Physica Sinica, 2006, 55(6): 2977-2981. doi: 10.7498/aps.55.2977
    [18] PU FU-CHO, WANG DING-SHENG. THE MEAN FIELD THEORY FOR SPONTANEOUS MAGNETIZATION OF A NON-UNIFORM FERROMAGNET. Acta Physica Sinica, 1978, 27(4): 439-447. doi: 10.7498/aps.27.439
    [19] SUPERCONDUCTING MATERIALS RESEARCH GROUP. THE FABRICATION OF SMALL SUPERCONDUCTING MAGNETS USING MULTIFILAMENTARY Nb3Sn CONDUCTORS. Acta Physica Sinica, 1976, 25(3): 268-269. doi: 10.7498/aps.25.268
    [20] . Acta Physica Sinica, 1965, 21(8): 1573-1577. doi: 10.7498/aps.21.1573
Metrics
  • Abstract views:  5924
  • PDF Downloads:  147
  • Cited By: 0
Publishing process
  • Received Date:  27 May 2017
  • Accepted Date:  25 July 2017
  • Published Online:  05 November 2017

/

返回文章
返回
Baidu
map