搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弯曲应变下六角晶格量子反铁磁体的赝朗道能级

解晓洁 孙俊松 秦吉红 郭怀明

引用本文:
Citation:

弯曲应变下六角晶格量子反铁磁体的赝朗道能级

解晓洁, 孙俊松, 秦吉红, 郭怀明

Pseudo-Landau levels of hexagonal lattice quantum antiferromagnets under bending strain

Xie Xiao-Jie, Sun Jun-Song, Qin Ji-Hong, Guo Huai-Ming
PDF
HTML
导出引用
  • 利用线性自旋波理论和量子蒙特卡罗方法研究了弯曲应变下六角晶格量子反铁磁体的赝朗道能级. 通过线性自旋波理论, 发现磁赝朗道能级出现在磁子能谱的高能端, 其能级间距与能级指数的平方根成正比. 线性自旋波理论和量子蒙特卡罗方法都显示, 尺寸相同时随着应变强度的逐渐增加, 局域磁化强度逐渐减弱, 应变强度相同的条件下反铁磁序在y方向上连续减弱, 因为上边界处的海森伯链解耦为孤立的垂直链, 导致上边界附近的磁序被破坏. 量子蒙特卡罗方法提供了更精确的反铁磁序演化: 在特定应变强度下上边界处垂直关联不变, 水平关联增加, 从而影响磁化强度, 使局域磁化在上边界处呈上翘趋势. 研究结果有助于理解弯曲应变对自旋激发的影响, 并可能在二维量子磁性材料实验中得以实现.
    The pseudo-Landau energy levels of a hexagonal lattice quantum antiferromagnet under bending strain are studied by linear spin-wave theory (LSWT) and quantum Monte Carlo method (QMC). Using the linear spin wave theory, the magnetic pseudo-Landau energy level can be found to appear at the high-energy end of the magnon spectrum, and the energy level spacing is proportional to the square root of the energy level index. The linear spin wave theory and the quantum Monte Carlo method both indicate that at the same size, the local magnetization gradually weakens with the gradual increase of the strain strength. Additionally, the antiferromagnetic order continuously weakens in the y-direction under the same strain strength. This occurs because the Heisenberg chain on the upper boundary becomes decoupled into an isolated vertical chain, leading to the destruction of the magnetic order near the upper boundary. The quantum Monte Carlo method provides a more accurate antiferromagnetic sequence evolution, that is, the vertical correlation at the upper boundary is unchanged and the horizontal correlation increases under a specific strain intensity. This affects the magnetization intensity, so that the local magnetization shows an upward trend at the upper boundary. The results contribute to the understanding of the effect of bending strain on spin excitations, and this effect may be observed in two-dimensional quantum magnetic material experiments.
      通信作者: 秦吉红, jhqin@sas.ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774019, 12074022)和中央高校基本科研业务费(批准号: FRF-BR-16-014A)资助的课题.
      Corresponding author: Qin Ji-Hong, jhqin@sas.ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774019, 12074022) and the Fundamental Research Fund for the Central Universities, China (Grant No. FRF-BR-16-014A).
    [1]

    Castro-Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [2]

    Pereira V M, Castro-Neto A H 2009 Phys. Rev. Lett. 103 046801Google Scholar

    [3]

    Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro-Neto A H, Crommie M F 2010 Science 329 544Google Scholar

    [4]

    Koskinen P 2012 Phys. Rev. B 85 205429Google Scholar

    [5]

    Nieminen A, Ornigotti M 2022 Phys. Rev. A 106 043517Google Scholar

    [6]

    Lu W T, Sun Q F, Tian H Y, Zhou B H, Liu H M 2020 Phys. Rev. B 102 125426Google Scholar

    [7]

    Pereira V M, Castro-Neto A H, Peres N M R 2009 Phys. Rev. B 80 045401Google Scholar

    [8]

    Sharma A, Kotov V N, Castro-Neto A H 2017 Phys. Rev. B 95 235124Google Scholar

    [9]

    Vozmediano M A H, Katsnelson M I, Guinea F 2010 Phys. Rep. 496 109Google Scholar

    [10]

    Torres V, Faria D, Latgé A 2018 Phys. Rev. B 97 165429Google Scholar

    [11]

    Zhang X, Pan G P, Zhang Y, Kang J, Meng Z Y 2021 Chin. Phys. Lett. 38 077305Google Scholar

    [12]

    蔡潇潇, 罗国语, 李志强, 贺言 2021 70 187301Google Scholar

    Cai X X, Luo G Y, Li Z Q, He Y 2021 Acta Phys. Sin. 70 187301Google Scholar

    [13]

    Li Y F, Chen Z F 2014 Phys. Chem. C 118 1148Google Scholar

    [14]

    Phan A L, Le D N, Le V H, Roy P 2020 Physica E 121 114084Google Scholar

    [15]

    Jiang Y C, Gao J 2014 Sci. Rep. 4 6738Google Scholar

    [16]

    Sun J S, Guo H M, Feng S P 2021 Phys. Rev. Res. 3 043223Google Scholar

    [17]

    Nayga M M, Rachel S, Vojta M 2019 Phys. Rev. Lett. 123 207204Google Scholar

    [18]

    Sun J S, Ma N, Ying T, Guo H M, Feng S P 2021 Phys. Rev. B 104 125117Google Scholar

    [19]

    Zabolotskiy A D, Lozovik Y E 2016 Phys. Rev. B 94 165403Google Scholar

    [20]

    Toth S, Lake B 2015 J. Phys. Condens. Matter 27 166002Google Scholar

    [21]

    Liao L, Chen Y 2014 Superlattices Microstruct. 73 82Google Scholar

    [22]

    Syljuåsen O F, Sandvik A W 2002 Phys. Rev. E 66 046701Google Scholar

    [23]

    Syljuåsen O F 2003 Phys. Rev. E 67 046701Google Scholar

    [24]

    Alet F, Wessel S, Troyer M 2005 Phys. Rev. E 71 036706Google Scholar

    [25]

    Holstein T, Primakoff H 1940 Phys. Rev. 58 1098Google Scholar

    [26]

    Settnes M, Power S R, Jauho A P 2016 Phys. Rev. B 93 035456Google Scholar

    [27]

    Yang L, Anantram M P, Han J, Lu J P 1999 Phys. Rev. B 60 13874Google Scholar

    [28]

    Nikiforov I, Dontsova E, James R D, Dumitrică T 2014 Phys. Rev. B 89 155437Google Scholar

    [29]

    Wang Z J, Luitz D J, Villadiego I S 2022 Phys. Rev. B 106 125150Google Scholar

    [30]

    Ma T X, Huang Z B, Hu F M, Lin H Q 2011 Phys. Rev. B 84 121410Google Scholar

    [31]

    Fang S C, Liu G K, Lin H Q, Huang Z B 2019 Phys. Rev. B 100 115135Google Scholar

    [32]

    Golor M, Lang T C, Wessel S 2013 Phys. Rev. B 87 155441Google Scholar

    [33]

    Dai X 2022 Chin. Phys. Lett. 39 050101Google Scholar

    [34]

    Lu H Y, Li C H, Chen B B, Li W, Qi Y, Meng Z Y 2022 Chin. Phys. Lett. 39 050701Google Scholar

    [35]

    Wessel S, Jagannathan A, Haas S 2003 Phys. Rev. Lett. 90 177205Google Scholar

    [36]

    Rostami H, Guinea F, Cappelluti E 2022 Phys. Rev. B 105 195431Google Scholar

    [37]

    Bussy A, Pizzi G, Gibertini M 2017 Phys. Rev. B 96 165438Google Scholar

    [38]

    Yadav R, Rachel S, Hozoi L, van den Brink J, Jackeli G 2018 Phys. Rev. B 98 121107Google Scholar

    [39]

    Liu T Y 2020 Phys. Rev. B 102 045151Google Scholar

    [40]

    肖寒, 弭孟娟, 王以林 2021 70 127503Google Scholar

    Xiao H, Mi M J, Wang Y L 2021 Acta Phys. Sin. 70 127503Google Scholar

    [41]

    Webster L, Yan J A 2018 Phys. Rev. B 98 144411Google Scholar

    [42]

    Deng Y C, Liu X H, Chen Y Y, Du Z Z, Jiang N, Shen C, Zhang E Z, Zheng H Z, Lu H Z, Wang K Y 2023 Natl. Sci. Rev. 10 nwac154Google Scholar

  • 图 1  (a)弯曲应变下具有锯齿状边缘的内半径为R, 外半径为$R+W$的蜂窝扇形纳米带, 纳米带在x方向具有周期性, y方向的宽度是$L_{y}=6$; (b)弯曲应变下宽度为$L_{y}=200$的纳米带上边界处的晶格放大图. 不同厚度的键表示不同的交换耦合值, 数值标记在旁边

    Fig. 1.  (a) A honeycomb fan-shaped nanoribbon with jagged edges with an inner radius R and an outer radius $R+W$ under bending strain. The nanoribbon is periodic in the x direction, and the width in the y direction is $L_{y}=6$. (b) Enlarged lattice at the upper boundary of a nanoribbon with a width of $L_{y}=200$ under bending strain. Keys of different thicknesses represent different exchange coupling values, and numerical values are marked next to them.

    图 2  锯齿状反铁磁蜂窝纳米带的磁子能谱 (a)无应变情况; (b)弯曲应变情况; 图(c)和图(d)是图(a)和图(b)两种情况对应的磁子态密度. 在图(b)和图(d)中, 应变强度为$c/c_{\max}=1$. 图(d)中的红色虚线框内的曲线将放大显示在图3

    Fig. 2.  The magnon spectrum of the antiferromagnetic honeycomb nanoribbon: (a) Without strain; (b) under bending strain. Panels (c) and (d) are the magnon density of states corresponding to panels (a) and (b). In panels (b) and (d), the strain strength is $c/c_{\max}=1$. The curve inside the red dashed box in panel (d) will be enlarged as shown in Fig. 3.

    图 3  (a)磁子能谱上端态密度; (b)赝朗道能级的能量$\omega_{n}$作为能级指数n的平方根的函数, 实线反映了数据的线性拟合. 图(c)和图(d)是子晶格AB上的局域磁化率. 在图(a), 图(c)和图(d)中, 应变强度采用$c/c_{\max} = 1$, 线性尺寸Ly = 200, Lx = 20

    Fig. 3.  (a) The density of states at the upper end of the magnon spectrum; (b) the energy $\omega_{n}$ of the pseudo-Landau level is a function of the square root of the energy level index n, and the solid line reflects the linear fit of the data. Panels (c) and (d) are the local magnetic susceptibility on the sublattices A and B. In panels (a), (c) and (d), the strain strength is $c/c_{\max}=1$, the linear size is $L_{y}=200$, $L_{x}=20$.

    图 4  (a)在应变强度$c/c_{\max}=0, 0.5$和1下, 通过线性自旋波理论和量子蒙特卡罗模拟得到的局域磁化强度. 图(b)和图(c)分别放大了图(a)中无应变和最大应变时靠近下边界的曲线. 计算的格点范围延伸到400 (与此后的图表相同)

    Fig. 4.  (a) The local magnetization obtained by linear spin wave theory and quantum Monte Carlo simulations under $c/c_{\max}=0$, 0.5 and 1. Panels (b) and (c) magnify the curves near the lower boundary at no strain and maximum strain in panel (a), respectively. The calculated grid point range is extended to 400 (same as charts hereafter).

    图 5  在应变强度$c/c_{\max}=0—1$下, 量子蒙特卡罗模拟得到的局域磁化强度 (a) $0—400$号格点上的数值; (b) $250— $$ 400$号格点上的数值

    Fig. 5.  The local magnetization obtained by quantum Monte Carlo simulations under $c/c_{\max}=0$–1: (a) Values at grid points 0–400; (b) values at grid points 250–400

    图 6  在应变强度$c/c_{\max}=0—1$下, 作为zigzag链指数函数的垂直和水平交换耦合

    Fig. 6.  Under $c/c_{\max}=0$–1, the variation of horizontal bond and vertical bond with the lattice position.

    图 7  在$c/c_{\max}=0—1$范围内390—400号格点上的(a)水平关联, (b) 垂直关联

    Fig. 7.  (a) Horizontal correlations, (b) vertical correlations at grid points 390–400 under $c/c_{\max}=0$–1.

    Baidu
  • [1]

    Castro-Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [2]

    Pereira V M, Castro-Neto A H 2009 Phys. Rev. Lett. 103 046801Google Scholar

    [3]

    Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro-Neto A H, Crommie M F 2010 Science 329 544Google Scholar

    [4]

    Koskinen P 2012 Phys. Rev. B 85 205429Google Scholar

    [5]

    Nieminen A, Ornigotti M 2022 Phys. Rev. A 106 043517Google Scholar

    [6]

    Lu W T, Sun Q F, Tian H Y, Zhou B H, Liu H M 2020 Phys. Rev. B 102 125426Google Scholar

    [7]

    Pereira V M, Castro-Neto A H, Peres N M R 2009 Phys. Rev. B 80 045401Google Scholar

    [8]

    Sharma A, Kotov V N, Castro-Neto A H 2017 Phys. Rev. B 95 235124Google Scholar

    [9]

    Vozmediano M A H, Katsnelson M I, Guinea F 2010 Phys. Rep. 496 109Google Scholar

    [10]

    Torres V, Faria D, Latgé A 2018 Phys. Rev. B 97 165429Google Scholar

    [11]

    Zhang X, Pan G P, Zhang Y, Kang J, Meng Z Y 2021 Chin. Phys. Lett. 38 077305Google Scholar

    [12]

    蔡潇潇, 罗国语, 李志强, 贺言 2021 70 187301Google Scholar

    Cai X X, Luo G Y, Li Z Q, He Y 2021 Acta Phys. Sin. 70 187301Google Scholar

    [13]

    Li Y F, Chen Z F 2014 Phys. Chem. C 118 1148Google Scholar

    [14]

    Phan A L, Le D N, Le V H, Roy P 2020 Physica E 121 114084Google Scholar

    [15]

    Jiang Y C, Gao J 2014 Sci. Rep. 4 6738Google Scholar

    [16]

    Sun J S, Guo H M, Feng S P 2021 Phys. Rev. Res. 3 043223Google Scholar

    [17]

    Nayga M M, Rachel S, Vojta M 2019 Phys. Rev. Lett. 123 207204Google Scholar

    [18]

    Sun J S, Ma N, Ying T, Guo H M, Feng S P 2021 Phys. Rev. B 104 125117Google Scholar

    [19]

    Zabolotskiy A D, Lozovik Y E 2016 Phys. Rev. B 94 165403Google Scholar

    [20]

    Toth S, Lake B 2015 J. Phys. Condens. Matter 27 166002Google Scholar

    [21]

    Liao L, Chen Y 2014 Superlattices Microstruct. 73 82Google Scholar

    [22]

    Syljuåsen O F, Sandvik A W 2002 Phys. Rev. E 66 046701Google Scholar

    [23]

    Syljuåsen O F 2003 Phys. Rev. E 67 046701Google Scholar

    [24]

    Alet F, Wessel S, Troyer M 2005 Phys. Rev. E 71 036706Google Scholar

    [25]

    Holstein T, Primakoff H 1940 Phys. Rev. 58 1098Google Scholar

    [26]

    Settnes M, Power S R, Jauho A P 2016 Phys. Rev. B 93 035456Google Scholar

    [27]

    Yang L, Anantram M P, Han J, Lu J P 1999 Phys. Rev. B 60 13874Google Scholar

    [28]

    Nikiforov I, Dontsova E, James R D, Dumitrică T 2014 Phys. Rev. B 89 155437Google Scholar

    [29]

    Wang Z J, Luitz D J, Villadiego I S 2022 Phys. Rev. B 106 125150Google Scholar

    [30]

    Ma T X, Huang Z B, Hu F M, Lin H Q 2011 Phys. Rev. B 84 121410Google Scholar

    [31]

    Fang S C, Liu G K, Lin H Q, Huang Z B 2019 Phys. Rev. B 100 115135Google Scholar

    [32]

    Golor M, Lang T C, Wessel S 2013 Phys. Rev. B 87 155441Google Scholar

    [33]

    Dai X 2022 Chin. Phys. Lett. 39 050101Google Scholar

    [34]

    Lu H Y, Li C H, Chen B B, Li W, Qi Y, Meng Z Y 2022 Chin. Phys. Lett. 39 050701Google Scholar

    [35]

    Wessel S, Jagannathan A, Haas S 2003 Phys. Rev. Lett. 90 177205Google Scholar

    [36]

    Rostami H, Guinea F, Cappelluti E 2022 Phys. Rev. B 105 195431Google Scholar

    [37]

    Bussy A, Pizzi G, Gibertini M 2017 Phys. Rev. B 96 165438Google Scholar

    [38]

    Yadav R, Rachel S, Hozoi L, van den Brink J, Jackeli G 2018 Phys. Rev. B 98 121107Google Scholar

    [39]

    Liu T Y 2020 Phys. Rev. B 102 045151Google Scholar

    [40]

    肖寒, 弭孟娟, 王以林 2021 70 127503Google Scholar

    Xiao H, Mi M J, Wang Y L 2021 Acta Phys. Sin. 70 127503Google Scholar

    [41]

    Webster L, Yan J A 2018 Phys. Rev. B 98 144411Google Scholar

    [42]

    Deng Y C, Liu X H, Chen Y Y, Du Z Z, Jiang N, Shen C, Zhang E Z, Zheng H Z, Lu H Z, Wang K Y 2023 Natl. Sci. Rev. 10 nwac154Google Scholar

  • [1] 施洪潮, 唐炳, 刘超飞. 双层蜂窝状海森伯铁磁体中层间交换耦合相互作用对拓扑相的影响.  , 2024, 73(13): 137501. doi: 10.7498/aps.73.20240437
    [2] 许霄琰. 强关联电子体系的量子蒙特卡罗计算.  , 2022, 71(12): 127101. doi: 10.7498/aps.71.20220079
    [3] 许育培, 李树. 热辐射输运问题的高效蒙特卡罗模拟方法.  , 2020, 69(2): 029501. doi: 10.7498/aps.69.20191315
    [4] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度.  , 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [5] 宋冬灵, 明亮, 单昊, 廖天河. 超强磁场下电子朗道能级稳定性及对电子费米能的影响.  , 2016, 65(2): 027102. doi: 10.7498/aps.65.027102
    [6] 林呈, 张华堂, 盛志浩, 余显环, 刘鹏, 徐竟文, 宋晓红, 胡师林, 陈京, 杨玮枫. 用推广的量子轨迹蒙特卡罗方法研究强场光电子全息.  , 2016, 65(22): 223207. doi: 10.7498/aps.65.223207
    [7] 陈锟, 邓友金. 用量子蒙特卡罗方法研究二维超流-莫特绝缘体相变点附近的希格斯粒子.  , 2015, 64(18): 180201. doi: 10.7498/aps.64.180201
    [8] 计青山, 郝鸿雁, 张存喜, 王瑞. 硅烯中受电场调控的体能隙和朗道能级.  , 2015, 64(8): 087302. doi: 10.7498/aps.64.087302
    [9] 张世功, 吴先梅, 张碧星. 基于迟滞应力应变关系的非线性声学检测理论与方法研究.  , 2014, 63(19): 194302. doi: 10.7498/aps.63.194302
    [10] 林舒, 闫杨娇, 李永东, 刘纯亮. 微波器件微放电阈值计算的蒙特卡罗方法研究.  , 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [11] 李树, 李刚, 田东风, 邓力. 热辐射输运问题的隐式蒙特卡罗方法求解.  , 2013, 62(24): 249501. doi: 10.7498/aps.62.249501
    [12] 郭福明, 宋阳, 陈基根, 曾思良, 杨玉军. 含时量子蒙特卡罗方法研究两电子原子在强激光作用下电子的动力学行为.  , 2012, 61(16): 163203. doi: 10.7498/aps.61.163203
    [13] 高继华, 谢伟苗, 高加振, 杨海朋, 戈早川. 耦合复金兹堡-朗道(Ginzburg-Landau)方程中的模螺旋波.  , 2012, 61(13): 130506. doi: 10.7498/aps.61.130506
    [14] 许莹, 李晋斌. 大粒子数二维硬核玻色子系统的量子蒙特卡罗模拟.  , 2012, 61(11): 110207. doi: 10.7498/aps.61.110207
    [15] 季沛勇, 鲁楠, 祝俊. 量子等离子体中波的色散关系以及朗道阻尼.  , 2009, 58(11): 7473-7478. doi: 10.7498/aps.58.7473
    [16] 王冠芳, 刘 彬, 傅立斌, 赵 鸿. 非线性三能级体系的绝热朗道-齐纳隧穿.  , 2007, 56(7): 3733-3738. doi: 10.7498/aps.56.3733
    [17] 郝樊华, 胡广春, 刘素萍, 龚 建, 向永春, 黄瑞良, 师学明, 伍 钧. 钚体源样品γ能谱计算的蒙特卡罗方法.  , 2005, 54(8): 3523-3529. doi: 10.7498/aps.54.3523
    [18] 胡响明, 汪德新. 光抽运双光子激光朗之万量子理论.  , 1992, 41(3): 437-441. doi: 10.7498/aps.41.437
    [19] 崔世民, 蔡建华. 二维费密液体理论(Ⅱ)——3He朗道参数的计算.  , 1990, 39(4): 572-579. doi: 10.7498/aps.39.572
    [20] 郑杭. RbNiF3自旋波量子对的Raman散射谱理论分析.  , 1982, 31(12): 13-27. doi: 10.7498/aps.31.13
计量
  • 文章访问数:  2332
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-30
  • 修回日期:  2023-10-07
  • 上网日期:  2023-10-14
  • 刊出日期:  2024-01-20

/

返回文章
返回
Baidu
map