搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于交换作用的纳磁逻辑电路片上时钟结构研究

张明亮 蔡理 杨晓阔 秦涛 刘小强 冯朝文 王森

引用本文:
Citation:

基于交换作用的纳磁逻辑电路片上时钟结构研究

张明亮, 蔡理, 杨晓阔, 秦涛, 刘小强, 冯朝文, 王森

On-chip clocking for exchange-interaction-based nanomagnetic logic circuits

Zhang Ming-Liang, Cai Li, Yang Xiao-Kuo, Qin Tao, Liu Xiao-Qiang, Feng Chao-Wen, Wang Sen
PDF
导出引用
  • 纳磁逻辑电路具有低功耗、非易失和可常温下制备等优点, 实现低功耗片上时钟是其集成化的必备条件. 本文提出了一种基于交换作用的纳磁逻辑电路片上时钟结构, 用载流铜导线产生的奥斯特场将铁磁体薄膜覆层进行磁化, 然后依靠铁磁体层与纳磁体界面存在的交换作用场使后者磁化方向发生翻转. 与轭式铁磁体时钟用外磁场控制纳磁体磁化方向相比, 该方案在功耗方面降低了5/6, 时钟边界杂散场强度降低了2/3, 达到降低功耗、减轻串扰的目的. 此外, 采用微磁仿真进一步验证了该时钟结构上的纳磁体逻辑阵列可以实现逻辑功能.
    Nanomagnetic logic has the advantages in low power, non-volatility, and room temperature operation, however, low power on-chip clocking is the requirement of its integration. An on-chip clocking structure for a nanomagnetic logic circuit using exchange interaction is proposed in this work. This scheme is to use the Oersted field generated by current-carrying copper wire to magnetize ferromagnetic film cladding and then to switch the magnetization orientation of nanomagnets by the exchange interaction between magnetic layers. Simulation results demonstrate that the proposed scheme can reduce the power dissipation by 5/6 and the marginal spray field by 2/3 compared with the ferromagnetic yoked clocking that uses the external field to switch the magnetization. Therefore, it can reduce the power consumption and the risk of crosstalk. In addition, micromagnetic simulation verifies that nanomagnetic array laid on the proposed clocking can work functionally.
    • 基金项目: 国家自然科学基金(批准号:61172043,61302022)和陕西省自然科学基础研究计划(批准号:2013JQ8010)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grants Nos. 61172043, 61302022) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2013JQ8010).
    [1]

    Duan C G 2009 Progress in Physics 29 215 (in Chinese) [段纯刚 2009 物理学进展 29 215]

    [2]

    Dobson J 2008 Nature Nanotech. 3 139

    [3]

    Lou J Y, Jiang X S, Xu T J, Liang D L, Jiao F J, Gao L 2012 Rare Metals 31 507

    [4]

    Zhang D, Zhai Y, Zhai H R 2007 Chin. Phys. B 16 1725

    [5]

    Liu H F, Ali S S, Han X F 2014 Chin. Phys. B 23 077501

    [6]

    Imre A, Csaba G, Ji L, Orlov A, Bernstein G H, Porod W 2006 Science 311 205

    [7]

    Yang X K, Cai L, Zhang M L, Duan X H, Wang Z 2013 Acta Electron. Sin. 41 1609 (in Chinese) [杨晓阔, 蔡理, 张明亮, 段小虎, 王卓 2013 电子学报 41 1609]

    [8]

    Yang X K, Cai L, Kang Q, Bai P, Zhao X H, Feng C W, Zhang L S 2011 Acta Phys. Sin. 60 098503 (in Chinese) [杨晓阔, 蔡理, 康强, 柏鹏, 赵晓辉, 冯朝文, 张立森 2011 60 098503]

    [9]

    Orlov A, Imre A, Csaba G, Ji L, Porod W, Bernstein G H 2008 J. Nanoelect. Optoelectr. 3 1

    [10]

    Lambson B, Gu Z, Carlton D, Dhuey S, Scholl A, Doran A, Young A, Bokor J 2012 Appl. Phys. Lett. 100 152406

    [11]

    Lyle A, Harms J, Klein T, Lentsch A, Klemm A, Martens D, Wang J P 2011 AIP Adv. 1 042177

    [12]

    Colci M, Johnson M 2013 IEEE Trans. Nanotechnol. 12 824

    [13]

    Yang X K, Cai L, Wang J H, Huang H T, Zhao X H, Li Z C, Liu B J 2012 Acta Phys. Sin. 61 047502 (in Chinese) [杨晓阔, 蔡理, 王久洪, 黄宏图, 赵晓辉, 李政操, 刘保军 2012 61 047502]

    [14]

    Yang X K, Cai L, Kang Q, Li Z C, Chen X Y, Zhao X H 2012 Acta Phys. Sin. 61 097503 (in Chinese) [杨晓阔, 蔡理, 康强, 李政操, 陈祥叶, 赵晓辉 2012 61 097503]

    [15]

    Alam M T, Siddiq M J, Bernstein G H, Niemier M, Porod W, Hu X S 2010 IEEE Trans. Nanotechnol. 9 348

    [16]

    Alam M T, Kurtz S J, Siddiq M, Niemier M T, Bernstein G H, Hu X S, Porod W 2012 IEEE Trans. Nanotechnol. 11 273

    [17]

    Li P, Csaba G, Niemier M, Hu X S, Nahas J, Porod W, Bernstein G H 2013 J. Appl. Phys. 113 17B906

    [18]

    Atulasimha J, Bandyopadhyay S 2010 Appl. Phys. Lett. 97 173105

    [19]

    Roy K, Bandyopadhyay S, Atulasimha J 2012 J. Appl. Phys. 112 023914

    [20]

    Bhowmik D, You L, Salahuddin S 2013 Nature Nanotechnol. 24 1

    [21]

    Zhu T 2014 Chin. Phys. B 23 047504

    [22]

    Stöhr J, Siegmann H C 2010 Magnetism: From Fundamentals to Nanoscale Dynamics (Beijing: World Publishing Corporation) pp68-79, 167, 637, 681-687.

    [23]

    Liu W, Liu X H, Cui W B, Gong W J, Zhang Z D 2013 Chin. Phys. B 22 027104

    [24]

    Yang X K, Cai L, Huang H T, Bai P, Peng W D 2011 Micro & Nano Lett. 6 353

  • [1]

    Duan C G 2009 Progress in Physics 29 215 (in Chinese) [段纯刚 2009 物理学进展 29 215]

    [2]

    Dobson J 2008 Nature Nanotech. 3 139

    [3]

    Lou J Y, Jiang X S, Xu T J, Liang D L, Jiao F J, Gao L 2012 Rare Metals 31 507

    [4]

    Zhang D, Zhai Y, Zhai H R 2007 Chin. Phys. B 16 1725

    [5]

    Liu H F, Ali S S, Han X F 2014 Chin. Phys. B 23 077501

    [6]

    Imre A, Csaba G, Ji L, Orlov A, Bernstein G H, Porod W 2006 Science 311 205

    [7]

    Yang X K, Cai L, Zhang M L, Duan X H, Wang Z 2013 Acta Electron. Sin. 41 1609 (in Chinese) [杨晓阔, 蔡理, 张明亮, 段小虎, 王卓 2013 电子学报 41 1609]

    [8]

    Yang X K, Cai L, Kang Q, Bai P, Zhao X H, Feng C W, Zhang L S 2011 Acta Phys. Sin. 60 098503 (in Chinese) [杨晓阔, 蔡理, 康强, 柏鹏, 赵晓辉, 冯朝文, 张立森 2011 60 098503]

    [9]

    Orlov A, Imre A, Csaba G, Ji L, Porod W, Bernstein G H 2008 J. Nanoelect. Optoelectr. 3 1

    [10]

    Lambson B, Gu Z, Carlton D, Dhuey S, Scholl A, Doran A, Young A, Bokor J 2012 Appl. Phys. Lett. 100 152406

    [11]

    Lyle A, Harms J, Klein T, Lentsch A, Klemm A, Martens D, Wang J P 2011 AIP Adv. 1 042177

    [12]

    Colci M, Johnson M 2013 IEEE Trans. Nanotechnol. 12 824

    [13]

    Yang X K, Cai L, Wang J H, Huang H T, Zhao X H, Li Z C, Liu B J 2012 Acta Phys. Sin. 61 047502 (in Chinese) [杨晓阔, 蔡理, 王久洪, 黄宏图, 赵晓辉, 李政操, 刘保军 2012 61 047502]

    [14]

    Yang X K, Cai L, Kang Q, Li Z C, Chen X Y, Zhao X H 2012 Acta Phys. Sin. 61 097503 (in Chinese) [杨晓阔, 蔡理, 康强, 李政操, 陈祥叶, 赵晓辉 2012 61 097503]

    [15]

    Alam M T, Siddiq M J, Bernstein G H, Niemier M, Porod W, Hu X S 2010 IEEE Trans. Nanotechnol. 9 348

    [16]

    Alam M T, Kurtz S J, Siddiq M, Niemier M T, Bernstein G H, Hu X S, Porod W 2012 IEEE Trans. Nanotechnol. 11 273

    [17]

    Li P, Csaba G, Niemier M, Hu X S, Nahas J, Porod W, Bernstein G H 2013 J. Appl. Phys. 113 17B906

    [18]

    Atulasimha J, Bandyopadhyay S 2010 Appl. Phys. Lett. 97 173105

    [19]

    Roy K, Bandyopadhyay S, Atulasimha J 2012 J. Appl. Phys. 112 023914

    [20]

    Bhowmik D, You L, Salahuddin S 2013 Nature Nanotechnol. 24 1

    [21]

    Zhu T 2014 Chin. Phys. B 23 047504

    [22]

    Stöhr J, Siegmann H C 2010 Magnetism: From Fundamentals to Nanoscale Dynamics (Beijing: World Publishing Corporation) pp68-79, 167, 637, 681-687.

    [23]

    Liu W, Liu X H, Cui W B, Gong W J, Zhang Z D 2013 Chin. Phys. B 22 027104

    [24]

    Yang X K, Cai L, Huang H T, Bai P, Peng W D 2011 Micro & Nano Lett. 6 353

  • [1] 何宇, 陈伟斌, 洪宾, 黄文涛, 张昆, 陈磊, 冯学强, 李博, 刘菓, 孙笑寒, 赵萌, 张悦. 热效应在电流驱动反铁磁/铁磁交换偏置场翻转中的显著作用.  , 2024, 73(2): 027501. doi: 10.7498/aps.73.20231374
    [2] 豆树清, 杨晓阔, 夏永顺, 袁佳卉, 崔焕卿, 危波, 白馨, 冯朝文. 一种基于异质多铁结构全局应变时钟的纳磁体择多逻辑门.  , 2023, 72(15): 157501. doi: 10.7498/aps.72.20230866
    [3] 崔岁寒, 郭宇翔, 陈秋皓, 金正, 杨超, 吴忠灿, 苏雄宇, 马正永, 田修波, 吴忠振. 闭合磁场的作用原理与布局逻辑.  , 2022, 71(5): 055203. doi: 10.7498/aps.71.20211781
    [4] 赵红艳, 蒋灵子, 朱岩, 潘燕飞, 樊济宇, 马春兰. 广义布洛赫条件下二维晶格的磁交换作用.  , 2022, 71(1): 017105. doi: 10.7498/aps.71.20211317
    [5] 赵红艳, 蒋灵子, 朱岩, 潘燕飞, 樊济宇, 马春兰. 广义布洛赫条件下二维晶格的磁交换作用.  , 2021, (): . doi: 10.7498/aps.70.20211317
    [6] 池明赫, 赵磊. 石墨烯纳米片磁有序和自旋逻辑器件第一原理研究.  , 2018, 67(21): 217101. doi: 10.7498/aps.67.20181297
    [7] 迟晓丹, 胡勇. 中心对称的阻挫磁体中斯格明子直径的调节.  , 2018, 67(13): 137502. doi: 10.7498/aps.67.20172709
    [8] 左剑, 张亮亮, 巩辰, 张存林. 太赫兹片上系统和基于微纳结构的太赫兹超宽谱源的研究进展.  , 2016, 65(1): 010704. doi: 10.7498/aps.65.010704
    [9] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜.  , 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [10] 郑小平, 张佩峰, 范多旺. 扩散理论对RLA模型中交换作用的研究.  , 2008, 57(1): 425-429. doi: 10.7498/aps.57.425
    [11] 李萍剑, 张文静, 张琦锋, 吴锦雷. 基于碳纳米管场效应管构建的纳电子逻辑电路.  , 2007, 56(2): 1054-1060. doi: 10.7498/aps.56.1054
    [12] 许小勇, 潘 靖, 胡经国. 交换偏置双层膜中的反铁磁自旋结构及其交换各向异性.  , 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [13] 夏 天, 张国营, 张学龙, 薛刘萍. 晶场二级效应与交换作用对PrF3晶体磁性及磁光性质的影响.  , 2007, 56(3): 1741-1745. doi: 10.7498/aps.56.1741
    [14] 张国营, 夏 天, 程 勇, 薛刘萍, 张学龙. 交换作用对CeF3晶体磁性和磁光效应的影响.  , 2006, 55(6): 3091-3094. doi: 10.7498/aps.55.3091
    [15] 张锡娟, 成海英, 杨翠红, 王维. 超交换作用对Er3Ga5O12的磁特性的影响.  , 2004, 53(5): 1507-1509. doi: 10.7498/aps.53.1507
    [16] 徐荣青, 王嘉赋, 周青春. 极向Kerr效应对电子自旋交换劈裂的依赖性.  , 2002, 51(9): 2161-2166. doi: 10.7498/aps.51.2161
    [17] 关立强, 王翠, 李贞姬, 金光星. s-f交换作用和电子交换作用对s电子比热容的影响.  , 1997, 46(8): 1598-1604. doi: 10.7498/aps.46.1598
    [18] 李义兵, 李少平. 各向异性磁介质中的静磁交换模.  , 1989, 38(7): 1177-1181. doi: 10.7498/aps.38.1177
    [19] 许政一. 交换作用涨落所引起的铁磁共振线宽.  , 1964, 20(4): 297-304. doi: 10.7498/aps.20.297
    [20] 李荫远. 铁磁理论的发展:s-d交换作用的问题.  , 1958, 14(3): 225-232. doi: 10.7498/aps.14.225
计量
  • 文章访问数:  5389
  • PDF下载量:  430
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-14
  • 修回日期:  2014-07-09
  • 刊出日期:  2014-11-05

/

返回文章
返回
Baidu
map