Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation on electrical transport properties of CdZnTe pixel detector

Nan Rui-Hua Wang Peng-Fei Jian Zeng-Yun Li Xiao-Juan

Citation:

Investigation on electrical transport properties of CdZnTe pixel detector

Nan Rui-Hua, Wang Peng-Fei, Jian Zeng-Yun, Li Xiao-Juan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Semi-insulating cadmium zinc telluride (CdZnTe or CZT) is an excellent material candidate for fabricating room-temperature nuclear radiation semiconductor detectors due to its high resistivity and good carrier transport behaviors. It is widely used in nuclear security, nuclear medicine, space science, etc. Nevertheless, the traditional CdZnTe planar detector is subjected to the effect of hole trailing on its hole transport characteristic, where its energy resolution and the photoelectric peak efficiency both decrease, and thus deteriorating the detection performance. In order to eliminate the effect of hole capture, the electrode with pixel structure for CdZnTe detector is designed for detecting single carriers that are only electrons. In this paper, a 10 mm10 mm2 mm wafer cut from an In doped Cd0.9Zn0.1Te single crystal, grown by the modified vertical Bridgman method, is employed to fabricate a 44 CdZnTe pixel detector, which is composed of 16 small pixel units with an area of 2 mm2 mm. Each of the pixel units is linked up with ASIC multichannel preamplifier and shaping amplifier by flip chip technology. Finally, the signal is treated by an integrated sensing chip. In the first case, the electrical properties and carrier transport properties of CdZnTe pixel detector are characterized by current-voltage (I-V) measurement via an Agilent 4155C semiconductor parameter analyzer and ray energy spectrum response via a standard Multi Channel Analyzer 6560 spectra measurement system, respectively. In the second case, the differences between CdZnTe planar detector and 44 pixel detector in the detection performance are discussed in detail. The results indicate that the bulk resistivity of CdZnTe pixel detector is determined to be about 1.7310 cm by a linear fit of I-V curve. The maximum leakage current of a single pixel is less than 2.2 nA for a bias voltage of 100 V. Furthermore, the carrier transport behaviors are evaluated with the mobility-lifetime product for electron in CdZnTe detector, which is 5.4110-4 cm2V-1 estimated by ray energy spectroscopy response under various bias voltages from 50 to 300 V at room temperature. The energy resolutions of the two CdZnTe detectors can reflect the ability of them to distinguish different energy gays during operation. The best energy resolution of a single pixel in CdZnTe pixel detector for 241Am@59.5 keV ray increases up to 5.78% under a 300 V bias voltage, whereas that of CdZnTe planar detector is only 6.85% in the same conditions. As a consequence, the detection performance of 44 CdZnTe pixel detector is better than that of the planar detector.
      Corresponding author: Wang Peng-Fei, 18710748870@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51502234, 51602242) and the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University, China (Grant No. SKLSP201410).
    [1]

    Lisiansky M, Berner A, Korchnoy V 2017 J. Cryst. Growth 467 54

    [2]

    Bolotnikov A E, Camarda G S, Cui Y 2013 J. Cryst. Growth 379 46

    [3]

    Liu Z L, Mao Y Z, Zou S Y 2009 Nucl. Electron. Detec. Tech. 29 1 (in Chinese)[刘志亮, 毛用泽, 邹士亚2009核电子学与探测技术29 1]

    [4]

    Zha G Q, Wang T, Xu Y D 2013 Physics 42 862 (in Chinese)[查钢强, 王涛, 徐亚东2013物理42 862]

    [5]

    Nan R H, Jie W Q, Zha G Q, Wang B, Yu H 2012 J. Cryst. Growth 361 25

    [6]

    Cavallini A, Tagantsev A K, Oberg S, Briddon P R, Setter N 2010 Phys. Rev. B 81 075215

    [7]

    Zeng H M, Wei T C, Wang J 2017 Nucl. Instrum. Methods Phys. Res. A 847 93

    [8]

    Emanuelsson P, Omling P, Meyer B, Wienecke M, Schenk M 1993 Phys. Rev. B 47 15578

    [9]

    Du M, Takenaka H, Singh D J 2008 Phys. Rev. B 77 094122

    [10]

    Kabiraj D, Ghosh S 2004 Appl. Phys. Lett. 84 1713

    [11]

    Li Z, Gu G, James R B 2011 J. Electron. Mater. 40 274

    [12]

    Zhang Q S, Zhang C Z, Lu Y Y 2013 Sensors 13 2447

    [13]

    Theinert R 2017 Nucl. Instrum. Methods Phys. Res. A 845 181

    [14]

    Kim H, Cirignano L, Shah K 2004 IEEE Trans. Nucl. Sci. 51 1229

    [15]

    Wang T, Jie W Q, Zhang J J 2007 J. Cryst. Growth 304 313

    [16]

    Li X, Chu J H, Li L X 2008 J. Optoelectron. Laser 19 751 (in Chinese)[李霞, 褚君浩, 李陇遐2008光电子19 751]

    [17]

    Gul R, Bolotnikov A, Kim H K, Rodriguez R, Keeter K, Li Z, Gu G, James R B 2011 J. Electron. Mater. 40 274

    [18]

    Wilson M D, Cernik R, Chen H 2011 Nucl. Instrum. Methods Phys. Res. A 652 158

    [19]

    Wang C, Zha G Q, Qi Y, Guo R R, Wang G Q, Jie W Q 2015 Atomic Energy Sci. Tech. 49 1321 (in Chinese)[王闯, 査钢强, 齐阳, 郭榕榕, 王光祺, 介万奇2015原子能科学技术49 1321]

    [20]

    Bolotnikov A E, Boggs S E, Hubertchen C M 2002 Nucl. Instrum. Meth. Phys. Res. A 482 395

    [21]

    Mardor I, Shor A, Eisen Y 2001 IEEE Trans. Nucl. Sci. 48 1033

  • [1]

    Lisiansky M, Berner A, Korchnoy V 2017 J. Cryst. Growth 467 54

    [2]

    Bolotnikov A E, Camarda G S, Cui Y 2013 J. Cryst. Growth 379 46

    [3]

    Liu Z L, Mao Y Z, Zou S Y 2009 Nucl. Electron. Detec. Tech. 29 1 (in Chinese)[刘志亮, 毛用泽, 邹士亚2009核电子学与探测技术29 1]

    [4]

    Zha G Q, Wang T, Xu Y D 2013 Physics 42 862 (in Chinese)[查钢强, 王涛, 徐亚东2013物理42 862]

    [5]

    Nan R H, Jie W Q, Zha G Q, Wang B, Yu H 2012 J. Cryst. Growth 361 25

    [6]

    Cavallini A, Tagantsev A K, Oberg S, Briddon P R, Setter N 2010 Phys. Rev. B 81 075215

    [7]

    Zeng H M, Wei T C, Wang J 2017 Nucl. Instrum. Methods Phys. Res. A 847 93

    [8]

    Emanuelsson P, Omling P, Meyer B, Wienecke M, Schenk M 1993 Phys. Rev. B 47 15578

    [9]

    Du M, Takenaka H, Singh D J 2008 Phys. Rev. B 77 094122

    [10]

    Kabiraj D, Ghosh S 2004 Appl. Phys. Lett. 84 1713

    [11]

    Li Z, Gu G, James R B 2011 J. Electron. Mater. 40 274

    [12]

    Zhang Q S, Zhang C Z, Lu Y Y 2013 Sensors 13 2447

    [13]

    Theinert R 2017 Nucl. Instrum. Methods Phys. Res. A 845 181

    [14]

    Kim H, Cirignano L, Shah K 2004 IEEE Trans. Nucl. Sci. 51 1229

    [15]

    Wang T, Jie W Q, Zhang J J 2007 J. Cryst. Growth 304 313

    [16]

    Li X, Chu J H, Li L X 2008 J. Optoelectron. Laser 19 751 (in Chinese)[李霞, 褚君浩, 李陇遐2008光电子19 751]

    [17]

    Gul R, Bolotnikov A, Kim H K, Rodriguez R, Keeter K, Li Z, Gu G, James R B 2011 J. Electron. Mater. 40 274

    [18]

    Wilson M D, Cernik R, Chen H 2011 Nucl. Instrum. Methods Phys. Res. A 652 158

    [19]

    Wang C, Zha G Q, Qi Y, Guo R R, Wang G Q, Jie W Q 2015 Atomic Energy Sci. Tech. 49 1321 (in Chinese)[王闯, 査钢强, 齐阳, 郭榕榕, 王光祺, 介万奇2015原子能科学技术49 1321]

    [20]

    Bolotnikov A E, Boggs S E, Hubertchen C M 2002 Nucl. Instrum. Meth. Phys. Res. A 482 395

    [21]

    Mardor I, Shor A, Eisen Y 2001 IEEE Trans. Nucl. Sci. 48 1033

  • [1] Li Gao-Fang, Liao Yu-Ao, Cui Hao-Yang, Huang Chen-Guang, Wang Chen, Ma Guo-Hong, Zhou Wei, Huang Zhi-Ming, Chu Jun-Hao. Photocarrier dynamics in Cd0.96Zn0.04Te measured by optical-pump terahertz-probe spectroscopy. Acta Physica Sinica, 2023, 72(3): 037201. doi: 10.7498/aps.72.20221896
    [2] Wei Wen-Jing, Gao Xu-Dong, Lü Liang-Liang, Xu Nan-Nan, Li Gong-Ping. Simulation study of neutron radiation damage to cadmium zinc telluride. Acta Physica Sinica, 2022, 71(22): 226102. doi: 10.7498/aps.71.20221195
    [3] Cheng Kai, Wei Xin, Zeng De-Kai, Ji Xuan-Tao, Zhu Kun, Wang Xiao-Dong. Unfolding simulation of single-energy and continuous fast neutrons spectrum based on micro-pattern gas detector. Acta Physica Sinica, 2021, 70(11): 112901. doi: 10.7498/aps.70.20201954
    [4] Huang Guang-Wei, Wu Kun, Chen Ye, Li Lin-Xiang, Zhang Si-Yuan, Wang Zun-Gang, Zhu Hong-Ying, Zhou Chun-Zhi, Zhang Yi-Yun, Liu Zhi-Qiang, Yi Xiao-Yan, Li Jin-Min. Response to 14 MeV neutrons for single-crystal diamond detectors. Acta Physica Sinica, 2021, 70(20): 202901. doi: 10.7498/aps.70.20210891
    [5] Jia Lin, Tang Da-Wei, Zhang Xing. Experimental study of ultrafast carrier dynamics in polycrystalline ZnTe nanofilm. Acta Physica Sinica, 2015, 64(8): 087802. doi: 10.7498/aps.64.087802
    [6] Hu Hai-Fan, Wang Ying, Chen Jie, Zhao Shi-Bin. Full three-dimensional simulations of optimized active pixel detector for ionizing particle detection. Acta Physica Sinica, 2014, 63(10): 100702. doi: 10.7498/aps.63.100702
    [7] Zhao Shou-Ren, Huang Zhi-Peng, Sun Lei, Sun Peng-Chao, Zhang Chuan-Jun, Wu Yun-Hua, Cao Hong, Wang Shan-Li, Chu Jun-Hao. Analysis of electrical property parameters of CdS/CdTe solar cells fabricated by close space-sublimation. Acta Physica Sinica, 2013, 62(18): 188801. doi: 10.7498/aps.62.188801
    [8] Jiang Tian, Cheng Xiang-Ai, Xu Zhong-Jie, Lu Qi-Sheng. Generation mechanism of two different over-saturation phenomena of photovoltaic HgCdTe detectors irradiated by CW band-in laser. Acta Physica Sinica, 2013, 62(9): 097303. doi: 10.7498/aps.62.097303
    [9] Jiang Tian, Cheng Xiang-Ai, Zheng Xin, Xu Zhong-Jie, Jiang Hou-Man, Lu Qi-Sheng. Investigation of the nonlinear response mechanism of photovoltaic HgCdTe detector irradiated by CW band-in laser. Acta Physica Sinica, 2012, 61(13): 137302. doi: 10.7498/aps.61.137302
    [10] Zhang Shan, Hu Xiao-Ning. Deep levels of HgCdTe diodes on Si substrates. Acta Physica Sinica, 2011, 60(6): 068502. doi: 10.7498/aps.60.068502
    [11] Liu Xiao-Yu, Ma Wen-Quan, Zhang Yan-Hua, Huo Yong-Heng, Chong Ming, Chen Liang-Hui. Two-color quantum well infrared photodetector simultaneously working at 10—14 μm. Acta Physica Sinica, 2010, 59(8): 5720-5723. doi: 10.7498/aps.59.5720
    [12] Hou Li-Fei, Li Fang, Yuan Yong-Teng, Yang Guo-Hong, Liu Shen-Ye. Chemical vapor deposited diamond detectors for soft X-ray power measurement. Acta Physica Sinica, 2010, 59(2): 1137-1142. doi: 10.7498/aps.59.1137
    [13] Li Jian-Jun, Zheng Xiao-Bing, Lu Yun-Jun, Zhang-Wei, Xie Ping, Zou Peng. Accurate calibration of the spectral responsivity of silicon trap detectors between 350 and 1064 nm. Acta Physica Sinica, 2009, 58(9): 6273-6278. doi: 10.7498/aps.58.6273
    [14] Yue Fang-Yu, Shao Jun, Wei Yan-Feng, Lü Xiang, Huang Wei, Yang Jian-Rong, Chu Jun-Hao. Temperature-dependent absorption spectra investigation of shallow levels in HgCdTe grown by liquid phase epitaxy. Acta Physica Sinica, 2007, 56(5): 2878-2881. doi: 10.7498/aps.56.2878
    [15] Li Yi, Yi Xin-jian, Cai Li-ping. Study on the Oxidative Characterization of Lpe HgCdTe Film Surface by XPS . Acta Physica Sinica, 2000, 49(1): 132-136. doi: 10.7498/aps.49.132
    [16] Yan Bei-Peng, Liu Jia-Lu, Zhang Ting-Qing, Wang Chao-Dong, Liang Wei-He, Zhang Bao-Feng. . Acta Physica Sinica, 1995, 44(3): 439-445. doi: 10.7498/aps.44.439
    [17] GAN DE-CHANG. . Acta Physica Sinica, 1995, 44(1): 137-141. doi: 10.7498/aps.44.137
    [18] XU FENG, LIU LIAO. PARTICLE DETECTOR MODEL FOR INSTANT RESPONSE. Acta Physica Sinica, 1988, 37(8): 1267-1274. doi: 10.7498/aps.37.1267
    [19] SUN JING-WEN. PULSE CALIBRATION TECHNIQUE OF X-RAY DETECTOR. Acta Physica Sinica, 1986, 35(7): 864-873. doi: 10.7498/aps.35.864
    [20] YANG JIN-GANG, LI WEI-JIANG, GUO QING-JIANG, ZHU GUANG-HUA, JIANG CHEN-LIE. A CHARGED PARTICLE SPECTROGRAPH OF SEMICONDUCTOR DETECTOR WITH A SMALL MAGNETIC ANALYZER. Acta Physica Sinica, 1974, 23(1): 52-62. doi: 10.7498/aps.23.52
Metrics
  • Abstract views:  7352
  • PDF Downloads:  292
  • Cited By: 0
Publishing process
  • Received Date:  04 April 2017
  • Accepted Date:  20 July 2017
  • Published Online:  05 October 2017

/

返回文章
返回
Baidu
map