搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Er3+/Yb3+共掺NaYF4/LiYF4微米晶体的上转换荧光特性

高伟 董军 王瑞博 王朝晋 郑海荣

引用本文:
Citation:

Er3+/Yb3+共掺NaYF4/LiYF4微米晶体的上转换荧光特性

高伟, 董军, 王瑞博, 王朝晋, 郑海荣

Upconversion flourescence characteristics of Er3+/Yb3+ codoped NaYF4 and LiYF4 microcrystals

Gao Wei, Dong Jun, Wang Rui-Bo, Wang Zhao-Jin, Zheng Hai-Rong
PDF
导出引用
  • 采用水热法成功制备了Er3+/Yb3+共掺杂的NaYF4和LiYF4微米晶体. 通过X射线衍射仪和环境扫描电子显微镜对样品的晶体结构及形貌进行表征. 实验结果表明: 六方相NaYF4微米晶体为棒状结构, 而四方相LiYF4微米晶体则为八面体结构. 在近红外光980 nm激发下, NaYF4:Yb3+/Er3+和LiYF4:Yb3+/Er3+ 微米晶体均展现出很强上转换荧光发射. 且NaYF4:Yb3+/Er3+微米晶体的荧光发射强度大约是LiYF4:Yb3+/Er3+微米晶体的2倍, 但红绿比明显较低. 根据荧光光谱, 并借助激光光谱学及发光动力学深入探讨基质变化及表面修饰剂乙二胺四乙二酸(EDTA)对荧光特性的影响. 实验结果发现: 影响荧光强度的主要因素是基质环境的局域对称性, 而导致不同红绿比则是由于样品表面较多的EDTA分子所引起. Er3+掺杂的NaYF4和LiYF4 微米晶体呈现出很强的绿光发射可被应用于全色显示, 荧光粉和微光电子器件中.
    Lanthanide-doped upconverting fluoride nano-and micro-materials have aroused much research interest due to their potential applications in phosphors, color displays, optical storages, solid-state lasers, solar cells and biomedical imaging. In order to synthesize Ln3+ doped crystals with favorable optical properties, such as high upconversion (UC) efficiency and controllable emission profile, the two major parameters that affect luminescence processes including host materials and lanthanide activator ions should be selected appropriately in the synthesis process. Majority of scientists deem that lanthanide doped fluoride nano-and micro-materials with low phonon energy are currently the efficient UC host materials. In this work, Yb3+ and Er3+ ions codoped NaYF4 and LiYF4 microcrystals are synthesized by a facile hydrothermal method with ethylene diamine tetraacetic acid (EDTA) as a chelator. The NaYF4:Yb3+/Er3+ and LiYF4:Yb3+/Er3+ microcrystals are characterized by X-ray diffraction (XRD), scanning electron microscope(SEM), and the photo-luminescence spectra method. The influences of EDTA on the crystal phase, shape and upconversion luminescence are explored in detail. According to the results of XRD and SEM, the pure hexagonal phased NaYF4:Yb3+/Er3+ rod-like microcrystals each with smooth surface are all around 12 m in the length. While the pure tetragonal phased LiYF4: Yb3+/Er3+ microcrystals each with smooth surface are octahedral in shape, and their average size is around 12 m. Under near infrared (NIR) 980 nm excitation, the two dominant emission peaks of Er3+ ions at 544 nm and at 650 nm are observed in NaYF4 and LiYF4 microcrystals, which can be assigned to the transitions of (2H11/2/4S3/2)4I15/2 and 4F9/24I15/2, respectively. It is found that the upconversion luminescence intensity of NaYF4:Yb3+/Er3+ microcrystals is about two times that of LiYF4:Yb3+/Er3+ microcrystals under the same excitation conditions. The ratio of red-to-green emission of Er3+ ions in LiYF4 microcrystals is higher than that of the NaYF4:Yb3+/Er3+microcrystals. The changes of the spectra in the different hosts could stem from two sources: one is that the nonradiation relaxation probability relative to phonon energy of matrix, the other is that the radiative transition probability relative to the site symmetry of the crystal field acting on the ion. The ratios between 5D07F1 and 5D07F2 transitions of Eu3+ ions in NaYF4:Yb3+/Eu3+ and LiYF4:Yb3+/Eu3+ microcrystals are employed to compare and elucidate the site symmetry of the crystal field for Ln3+ ions. Note that the ratio of 5D07F1 and 5D07F2 transitions in NaYF4:Yb3+/Eu3+ microcrystals is smaller than that of the LiYF4:Yb3+/Eu3+ microcrystals, which indicates a much higher radiative relaxation rate in NaYF4 microcrystals than in LiYF4 microcrystals. The organic ligands of EDTA on the surface of microparticles affect the properties of luminescence through changing the nonradiative relaxation rate, resulting in the different R/G ratios in NaYF4 and LiYF4 microcrystals. This result can be further supported by the comparison between NaYF4 and LiYF4 microcrystals without EDTA added in the preparation process. The micro-sized luminescence materials usually present stronger upconversion luminescence because of their higher degree of crystallinity and less surface quenching centers. Thus, the Er3+ codoped NaYF4 and LiYF4 microcrystals exhibit strong green upconversion emission, which has potential applications in full-color displays and microelectronic devices.
      通信作者: 郑海荣, hrzheng@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11304247, 11574190)和陕西省科技新星项目(批准号: 2015KJXX-40)资助的课题.
      Corresponding author: Zheng Hai-Rong, hrzheng@snnu.edu.cn
    • Funds: Project supported by the National Science Foundation of China (Grant Nos. 11304247, 11574190) and the Shaanxi Provincial Research Plan for Young Scientific and Technological New Stars, China (Grant No. 2015KJXX-40).
    [1]

    Danielson E, Devenney M, Giaquinta D M, Golden J H, Haushalter R C, McFarland E W, Poojary D M, Reaves C M, Weinberg W H, Wu X D 1998 Science 279 837

    [2]

    Zhao C, Meng Q Y, Sun W J 2015 Acta Phys. Sin. 64 107803 (in Chinese) [赵聪, 孟庆裕, 孙文军 2015 64 107803]

    [3]

    Shalav A, Richards B S, Trupke T, Krmer K W, Gdel H U 2005 Appl. Phys. Lett. 86 13503

    [4]

    Dong H, Sun L D, Yan C H 2015 Chem. Soc. Rev. 44 1608

    [5]

    Zheng W, Huang P, Tu D T, Ma E, Zhu H M, Chen X Y 2015 Chem. Soc. Rev. 44 1379

    [6]

    Wang L, Yan R, Huo Z Y, Wang L, Zeng J H, Bao J, Wang X, Peng Q, Li Y D 2005 Angew. Chem. Int. Ed. 44 6054

    [7]

    Lima M E, Lee Y L, Zhang Y, Chu J J H 2012 Biomaterials 33 1912

    [8]

    Gao D L, Zhang X Y, Gao W 2012 J. Appl. Phys. 111 033505

    [9]

    Gao D L, Zheng H R, Tian Y, Lei Y, Cui M, He E J, Zhang X S 2010 Sci. Sin. Phys, Mech. Astron. 40 287 (in Chinese) [高当丽, 郑海荣, 田宇, 雷瑜, 崔敏, 何恩节, 张喜生 2010 中国科学: 物理学 力学 天文学 40 287]

    [10]

    Fu J, Fu X, Wang C M, Yang X F, Zhuang J L, Zhang G G, Lai B Y, Wu M M, Wang J 2013 Eur. J. Inorg. Chem. 8 1269

    [11]

    Mai H X, Zhang Y W, Sun L D, Yan C H 2007 J. Phys. Chem. C 111 13721

    [12]

    Sun L D, Dong H, Zhang P Z, Yan C H 2015 Annu. Rev. Phys. Chem. 66 619

    [13]

    Zhang F, Wan Y, Yu T, Zhang F Q, Shi Y F, Xie S H, Li Y G, Xu L, Tu B, Zhao D Y 2007 Angew. Chem. Int. Ed. 46 7976

    [14]

    Ma D K, Yang D P, Cai P, Huang S M 2010 Cryst. Eng. Comm. 12 1650

    [15]

    Zhuang J L, Wang J, Yang X F, Williams I D, Zhang W, Zhang Q Y, Feng Z M, Yang Z M, Liang C L, Wu M M, Su Q 2009 Chem. Mater. 21 160

    [16]

    Sun Y J, Chen Y, Tian L J, Yu Y, Kong X G1, Zhao J W, Zhang H 2007 Nanotechnology 18 275609

    [17]

    Zhang F, Che R C, Li X M, Yao C, Yang J P, Shen D K, Hu P, Li W, Zhao D Y 2012 Nano. Lett. 12 2852

    [18]

    Wang Y, Tu L P, Zhao J W, Sun Y J, Kong X H, Zhang H 2009 J. Phys. Chem. C. 113 7164

    [19]

    Song J B, Ni Y R, Xu Z Z 2013 J. Mater. Sci. 48 4989

    [20]

    Gao W, Zheng H R, Han Q Y, He E J, Wang R B 2014 Cryst. Eng. Comm. 16 6697

    [21]

    Ma D K, Yang D P, Jiang J L, Cai P, Huang S M 2010 Cryst. Eng. Comm. 12 1650

    [22]

    Wang Q, Qu J B, Song Z G, Zhou D C, Xu X H 2014 Chin. Phys. B 23 064211

    [23]

    Yi J, Qu J B, Wang Y A, Zhou D C 2014 Chin. Phys. B 23 0104224

    [24]

    Liang Z Q, Zhao S L, Cun Y, Tian L J, Zhang J J, Xu Z 2015 Chin. Phys. B 24 037801

    [25]

    Yang J Z, Qiu J B, Yang Z W, Song Z G, Yang Y, Zhou D C 2015 Acta Phys. Sin. 64 138101 (in Chinese) [杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成 2015 64 138101]

    [26]

    Dou Q Q, Zhang Y 2011 Langmuir 27 13236

    [27]

    Zhang X Y, Wang M Q, Ding J J, Deng J P, Ran C X, Yang Z 2014 Dalton Trans. 43 5453

    [28]

    Mahalingam V, Naccache R, Vetrone F, Capobianco J A 2009 Chem.-Eur. J. 15 9660

    [29]

    Mahalingam V, Vetrone F, Naccache R, Speghini A, Capobianco J 2009 Adv. Mater. 21 4025

    [30]

    Chen G Y, Ohulchanskyy T Y, Kachynski A, gren H, Prasa P N 2011 ACS Nano 5 4981

    [31]

    Gao W, Zheng H R, Li J, Gao D L, He E J, Tu Y X 2012 Sci. Sin. Phys. Mech. Astron. 42 1003 (in Chinese) [高 伟, 郑海荣, 李娇, 高当丽, 何恩节, 涂银勋2012 中国科学: 物理学 力学 天文学 42 1003]

    [32]

    Ding M Y, Lu C H, Cao L H, Huang W J, Nia Y R, Xu Z Z 2013 Cryst. Eng. Comm. 15 6015

    [33]

    Zhuang J L, Liang L F, Sung H H Y, Yang X F, Wu M M, Williams I D, Feng S H, Su Q 2007 Inorg. Chem. 46 5404

    [34]

    Judd B R 1962 Phys. Rev. 127 750

    [35]

    Ofelt G S 1962 J. Chem. Phys. 37 511

    [36]

    Kirby A F, Richardson F S 1983 J. Phys. Chem. 87 2544

    [37]

    Tsang W S, Yu W M, Mak C L, Tsui1 W L, Wong K H, Hui1et H K 2002 J. Appl. Phys. 91 1871

    [38]

    Chen X P, Zhang Q Y, Yang C H, Chen D D, Zhao C 2009 Spectrochim. Acta A 74 441

    [39]

    Lu C H, Huang W J, Ni Y R, Xu Z Z 2011 Mater. Res. Bull. 46 216

    [40]

    Gao W, Zheng H R, He E J, Lu Y, Gao F Q 2014 J. Lumin. 152 44

    [41]

    Zhao J W, Sun Y J, Kong X G, Tian L J, Wang Y, Tu L P, Zhao J L, Zhang H 2008 J. Chem. Phys. B 112 15666

  • [1]

    Danielson E, Devenney M, Giaquinta D M, Golden J H, Haushalter R C, McFarland E W, Poojary D M, Reaves C M, Weinberg W H, Wu X D 1998 Science 279 837

    [2]

    Zhao C, Meng Q Y, Sun W J 2015 Acta Phys. Sin. 64 107803 (in Chinese) [赵聪, 孟庆裕, 孙文军 2015 64 107803]

    [3]

    Shalav A, Richards B S, Trupke T, Krmer K W, Gdel H U 2005 Appl. Phys. Lett. 86 13503

    [4]

    Dong H, Sun L D, Yan C H 2015 Chem. Soc. Rev. 44 1608

    [5]

    Zheng W, Huang P, Tu D T, Ma E, Zhu H M, Chen X Y 2015 Chem. Soc. Rev. 44 1379

    [6]

    Wang L, Yan R, Huo Z Y, Wang L, Zeng J H, Bao J, Wang X, Peng Q, Li Y D 2005 Angew. Chem. Int. Ed. 44 6054

    [7]

    Lima M E, Lee Y L, Zhang Y, Chu J J H 2012 Biomaterials 33 1912

    [8]

    Gao D L, Zhang X Y, Gao W 2012 J. Appl. Phys. 111 033505

    [9]

    Gao D L, Zheng H R, Tian Y, Lei Y, Cui M, He E J, Zhang X S 2010 Sci. Sin. Phys, Mech. Astron. 40 287 (in Chinese) [高当丽, 郑海荣, 田宇, 雷瑜, 崔敏, 何恩节, 张喜生 2010 中国科学: 物理学 力学 天文学 40 287]

    [10]

    Fu J, Fu X, Wang C M, Yang X F, Zhuang J L, Zhang G G, Lai B Y, Wu M M, Wang J 2013 Eur. J. Inorg. Chem. 8 1269

    [11]

    Mai H X, Zhang Y W, Sun L D, Yan C H 2007 J. Phys. Chem. C 111 13721

    [12]

    Sun L D, Dong H, Zhang P Z, Yan C H 2015 Annu. Rev. Phys. Chem. 66 619

    [13]

    Zhang F, Wan Y, Yu T, Zhang F Q, Shi Y F, Xie S H, Li Y G, Xu L, Tu B, Zhao D Y 2007 Angew. Chem. Int. Ed. 46 7976

    [14]

    Ma D K, Yang D P, Cai P, Huang S M 2010 Cryst. Eng. Comm. 12 1650

    [15]

    Zhuang J L, Wang J, Yang X F, Williams I D, Zhang W, Zhang Q Y, Feng Z M, Yang Z M, Liang C L, Wu M M, Su Q 2009 Chem. Mater. 21 160

    [16]

    Sun Y J, Chen Y, Tian L J, Yu Y, Kong X G1, Zhao J W, Zhang H 2007 Nanotechnology 18 275609

    [17]

    Zhang F, Che R C, Li X M, Yao C, Yang J P, Shen D K, Hu P, Li W, Zhao D Y 2012 Nano. Lett. 12 2852

    [18]

    Wang Y, Tu L P, Zhao J W, Sun Y J, Kong X H, Zhang H 2009 J. Phys. Chem. C. 113 7164

    [19]

    Song J B, Ni Y R, Xu Z Z 2013 J. Mater. Sci. 48 4989

    [20]

    Gao W, Zheng H R, Han Q Y, He E J, Wang R B 2014 Cryst. Eng. Comm. 16 6697

    [21]

    Ma D K, Yang D P, Jiang J L, Cai P, Huang S M 2010 Cryst. Eng. Comm. 12 1650

    [22]

    Wang Q, Qu J B, Song Z G, Zhou D C, Xu X H 2014 Chin. Phys. B 23 064211

    [23]

    Yi J, Qu J B, Wang Y A, Zhou D C 2014 Chin. Phys. B 23 0104224

    [24]

    Liang Z Q, Zhao S L, Cun Y, Tian L J, Zhang J J, Xu Z 2015 Chin. Phys. B 24 037801

    [25]

    Yang J Z, Qiu J B, Yang Z W, Song Z G, Yang Y, Zhou D C 2015 Acta Phys. Sin. 64 138101 (in Chinese) [杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成 2015 64 138101]

    [26]

    Dou Q Q, Zhang Y 2011 Langmuir 27 13236

    [27]

    Zhang X Y, Wang M Q, Ding J J, Deng J P, Ran C X, Yang Z 2014 Dalton Trans. 43 5453

    [28]

    Mahalingam V, Naccache R, Vetrone F, Capobianco J A 2009 Chem.-Eur. J. 15 9660

    [29]

    Mahalingam V, Vetrone F, Naccache R, Speghini A, Capobianco J 2009 Adv. Mater. 21 4025

    [30]

    Chen G Y, Ohulchanskyy T Y, Kachynski A, gren H, Prasa P N 2011 ACS Nano 5 4981

    [31]

    Gao W, Zheng H R, Li J, Gao D L, He E J, Tu Y X 2012 Sci. Sin. Phys. Mech. Astron. 42 1003 (in Chinese) [高 伟, 郑海荣, 李娇, 高当丽, 何恩节, 涂银勋2012 中国科学: 物理学 力学 天文学 42 1003]

    [32]

    Ding M Y, Lu C H, Cao L H, Huang W J, Nia Y R, Xu Z Z 2013 Cryst. Eng. Comm. 15 6015

    [33]

    Zhuang J L, Liang L F, Sung H H Y, Yang X F, Wu M M, Williams I D, Feng S H, Su Q 2007 Inorg. Chem. 46 5404

    [34]

    Judd B R 1962 Phys. Rev. 127 750

    [35]

    Ofelt G S 1962 J. Chem. Phys. 37 511

    [36]

    Kirby A F, Richardson F S 1983 J. Phys. Chem. 87 2544

    [37]

    Tsang W S, Yu W M, Mak C L, Tsui1 W L, Wong K H, Hui1et H K 2002 J. Appl. Phys. 91 1871

    [38]

    Chen X P, Zhang Q Y, Yang C H, Chen D D, Zhao C 2009 Spectrochim. Acta A 74 441

    [39]

    Lu C H, Huang W J, Ni Y R, Xu Z Z 2011 Mater. Res. Bull. 46 216

    [40]

    Gao W, Zheng H R, He E J, Lu Y, Gao F Q 2014 J. Lumin. 152 44

    [41]

    Zhao J W, Sun Y J, Kong X G, Tian L J, Wang Y, Tu L P, Zhao J L, Zhang H 2008 J. Chem. Phys. B 112 15666

  • [1] 陈贝, 王小云, 刘涛, 高明, 文大东, 邓永和, 彭平. Pd-Si非晶合金动力学非均匀性的对称与有序.  , 2024, 73(24): . doi: 10.7498/aps.73.20241051
    [2] 严学文, 张景蕾, 张正宇, 丁鹏, 韩庆艳, 张成云, 高伟, 董军. 单颗粒NaYbF4:2%Er3+@NaYbF4核壳微米盘的上转换红光发射增强机理.  , 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [3] 高伟, 张正宇, 张景蕾, 丁鹏, 韩庆艳, 张成云, 严学文, 董军. 基于单颗粒微米核壳晶体的微区上转换发射光谱构筑微纳光子学条形码.  , 2024, 73(18): 184202. doi: 10.7498/aps.73.20241015
    [4] 慕立鹏, 周姚, 赵建行, 王丽, 蒋礼, 周见红. 基于阳极氧化铝模板增强NaYF4:Yb3+/Er3+上转换发光研究.  , 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [5] 文大东, 祁青华, 黄欣欣, 易洲, 邓永和, 田泽安, 彭平. 液态Ta快凝过程中团簇的遗传及其与局域对称性的关联.  , 2023, 72(24): 246101. doi: 10.7498/aps.72.20231153
    [6] 高伟, 骆一帆, 邢宇, 丁鹏, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 构建NaErF4@NaYbF4:2%Er3+核壳结构增强Er3+离子红光上转换发射.  , 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [7] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性.  , 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [8] 陈癸伶, 马佳佳, 孙佳石, 张金苏, 李香萍, 徐赛, 张希珍, 程丽红, 陈宝玖. 试验优化设计GdTaO4:RE/Yb(RE=Tm, Er)荧光粉制备及上转换发光特性研究.  , 2022, 71(16): 163301. doi: 10.7498/aps.71.20220474
    [9] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性研究.  , 2021, (): . doi: 10.7498/aps.70.20211719
    [10] 高伟, 王博扬, 孙泽煜, 高露, 张晨雪, 韩庆艳, 董军. 改变激发环境调控Ho3+离子的上转换发光特性.  , 2020, 69(3): 034207. doi: 10.7498/aps.69.20191333
    [11] 高伟, 王博扬, 韩庆艳, 韩珊珊, 程小同, 张晨雪, 孙泽煜, 刘琳, 严学文, 王勇凯, 董军. 构建垂直金纳米棒阵列增强NaYF4:Yb3+/Er3+纳米晶体的上转换发光.  , 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [12] 高伟, 董军. 共掺杂Ce3+调控-NaLuF4:Yb3+/Ho3+纳米晶体的上转换荧光发射.  , 2017, 66(20): 204206. doi: 10.7498/aps.66.204206
    [13] 杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成. Ba5SiO4Cl6: Yb3+, Er3+, Li+荧光粉的制备及上转换发光性质研究.  , 2015, 64(13): 138101. doi: 10.7498/aps.64.138101
    [14] 毛鑫光, 王俊, 沈杰. 磁控溅射制备Er3+/Yb3+共掺杂TiO2薄膜的上转换发光特性.  , 2014, 63(8): 087803. doi: 10.7498/aps.63.087803
    [15] 何恩节, 郑海荣, 高伟, 鹿盈, 李俊娜, 魏映, 王灯, 朱刚强. 锰离子对镥基纳米晶体的荧光调控与增强.  , 2013, 62(23): 237803. doi: 10.7498/aps.62.237803
    [16] 孙彧, 杨春晖, 姜兆华, 孟祥彬. LiNbO3和LiTaO3晶体Er3+/Yb3+掺杂水热外延层室温吸收光谱分析.  , 2012, 61(12): 127801. doi: 10.7498/aps.61.127801
    [17] 袁宁一, 陈效双, 丁建宁, 何泽军, 李锋, 陆卫. 溶胶-凝胶制备ZnO-SiO2复合膜的量子效应和上转换发光.  , 2009, 58(4): 2649-2653. doi: 10.7498/aps.58.2649
    [18] 金 哲, 聂秋华, 徐铁峰, 戴世勋, 沈 祥, 章向华. Tm3+/Yb3+共掺碲铅锌镧玻璃的能量传递和上转换发光.  , 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [19] 温 磊, 张丽艳, 杨建虎, 汪国年, 陈 伟, 胡丽丽. 掺铒氟(卤)磷碲酸盐玻璃的上转换发光性能研究.  , 2006, 55(3): 1486-1490. doi: 10.7498/aps.55.1486
    [20] 陈晓波, 刘凯, 庄健, 王国文, 陈创天. HoYb:YVO4的上转换发光研究.  , 2002, 51(3): 690-695. doi: 10.7498/aps.51.690
计量
  • 文章访问数:  8858
  • PDF下载量:  400
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-13
  • 修回日期:  2016-01-10
  • 刊出日期:  2016-04-05

/

返回文章
返回
Baidu
map