搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型干涉高光谱成像系统的光束剪切特性分析

李建欣 柏财勋 刘勤 沈燕 徐文辉 许逸轩

引用本文:
Citation:

新型干涉高光谱成像系统的光束剪切特性分析

李建欣, 柏财勋, 刘勤, 沈燕, 徐文辉, 许逸轩

Beam shearing characteristic analysis of interferometric hyperspectral imaging system

Li Jian-Xin, Bai Cai-Xun, Liu Qin, Shen Yan, Xu Wen-Hui, Xu Yi-Xuan
PDF
导出引用
  • 提出了一种基于新型双折射横向剪切分束器的高光谱成像方法,采用的横向剪切分束器主要由Wollaston棱镜和角锥反射体组成.在分析双折射分束器的偏光结构和分光机理的基础上,利用光线追迹方法分析了光束在Wollaston棱镜中的传播特性,通过计算光束在双折射分束器中的传播方向及出射位置,推导出调制光程差的理论表达公式.根据理论推导结果,分别仿真分析了系统在不同扫描模式下光程差与入射光视场角以及角锥顶点偏移量的调制关系.基于理论分析结果搭建了实验装置,对光程差分析结果进行验证,实验结果与理论分析结果匹配较好.所提方法可以提高剪切光束的平行性,保证干涉条纹的高调制度,降低了复原光谱准确度对光学装调精度和元件加工精度的依赖性,具有结构稳定、复杂度低的显著特点.
    A birefringent Fourier transform imaging spectrometer with a new lateral shearing interferometer is presented. The interferometer includes a Wollaston prism and a retroreflector. It splits an incident light beam into two shearing parallel parts to obtain interference fringe patterns of an imaging target, which is well established as an aid in reducing problems associated with optical alignment and manufacturing precision. The proposed method provides a direct technology for robust and inexpensive spectrometers to measure spectral signatures. Formulas for the optical path difference (OPD) produced by the proposed birefringent interferometer are derived by the ray-tracing method. Two experiments are carried out to demonstrate the accuracy of the formulas for OPD in the inner scanning mode and window scanning mode, respectively. A laser of wavelength 650 nm is used as a source of the experimental setup. The experimental estimations of the OPD and a reference OPD curve obtained with theoretical analysis are used for comparison. The match between the two curves is highly consistent, for the maximum deviation of the experimental OPD is less than /4. For the further verification of the imaging performance of the proposed method, another experiment is performed. A scene illuminated by an incandescent lamp is used as an imaging target. The temporal rotating of the retroreflector produces a series of time sequential interferograms, where the target is fixed and fringe patterns move. Performing nonuniform fast Fourier transform of the interferogram data produces a spectral data cube (i.e., the spectral images of the target).A series of recovered spectral images whose center wavelengths range from 450 to 650 nm is presented.In this paper, the principle of the instrument is described, and the OPD distribution formula is obtained and analyzed. The performance of the system is demonstrated through a numerical simulation and three experiments. This work will provide an important theoretical basis and the practical instruction for designing a new type of birefringent Fourier transform spectrometer based on Wollaston prism and its engineering applications.
      通信作者: 李建欣, ljx@vip.163.com
    • 基金项目: 国家自然科学基金(批准号:61475072)、国家重大科学仪器设备开发专项(批准号:2013YQ150829)、中央高校基本科研业务费专项资金(批准号:30916014112-010)和江苏省研究生科研创新计划(批准号:KYLX16_426)资助的课题.
      Corresponding author: Li Jian-Xin, ljx@vip.163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61475072), the National Key Scientific Instrument and Equipment Development Projects of China (Grant No. 2013YQ150829), the Fundamental Research Funds for the Central Universities, China (Grant No. 30916014112-010), and the Graduate Student Innovation Project of Jiangsu Province, China (Grant No. KYLX16_426).
    [1]

    Posselt W, Holota K, Tittel H O, Harnisch B 2001 Proceedings of the Fourier Transform Spectroscopy Coeur d'Alene, Idaho, United States, February 5, 2001 FMD10

    [2]

    Ferrec Y, Taboury J, Sauer H, Chavel P, Fournet P, Coudrain C, Deschamps J, Primot J 2011 Appl. Opt. 50 5894

    [3]

    Wang W C, Liang J Q, Liang Z Z, L J G, Qin Y X, Tian C, Wang W B 2014 Opt. Lett. 39 4911

    [4]

    Rafert J B, Sellar R G, Holbert E, Blatt J, Tyler D W, Durham S, Newby H 1994 Proc. SPIE 2198 338

    [5]

    Barducci A, Guzzi D, Lastri C, Marcoionni P, Nardino V, Pippi I 2010 Opt. Express 18 11622

    [6]

    Cabib D, Lavi M, Gil A, Milman U 2011 Proc. SPIE 8012 80123H

    [7]

    Crites S T, Lucey P G, Wright R, Garbeil H, Horton K A, Wood M 2012 Proc. SPIE 8385 838509

    [8]

    Li J X, Bai C X, Shen Y, Xu D L 2016 Opt. Lett. 41 5329

    [9]

    Xiang L B, Yuan Y, L Q B 2009 Acta Phys. Sin. 58 5399 (in Chinese)[相里斌, 袁艳, 吕群波 2009 58 5399]

    [10]

    Horton R F 1996 Proc. SPIE 2819 300

    [11]

    Pisani M, Zucco M 2009 Opt. Express 17 8319

    [12]

    Bai C X, Li J X, Meng X, Shen Y, Zhu R H 2015 Acta Opt. Sin. 35 0811002 (in Chinese)[柏财勋, 李建欣, 孟鑫, 沈燕, 朱日宏 2015 光学学报 35 0811002]

    [13]

    Smith W H, Hammer P D 1996 Appl. Opt. 35 2902

    [14]

    Zhang C M, Xiangli B, Zhao B C, Yuan X J 2002 Opt. Commun. 203 21

    [15]

    Harvey A R, Fletcher-Holmes D W 2004 Opt. Express 12 5368

    [16]

    Craven J, Kudenov M W, Stapelbroek M G, Dereniak E L 2011 Appl. Opt. 50 1170

    [17]

    Mu T K, Zhang C M, Ren W Y, Jia C L 2012 Opt. Lett. 37 3507

    [18]

    Fossi A P, Ferrec Y, Roux N, D'almeida O, Guerineau N, Sauer H 2016 Opt. Lett. 41 1901

    [19]

    Li J, Zhu J P, Zhang Y Y, Liu H, Hou X 2013 Acta Phys. Sin. 62 024205 (in Chinese)[李杰, 朱京平, 张云尧, 刘宏, 侯洵 2013 62 024205]

    [20]

    Quan N C, Zhang C M, Mu T K 2016 Acta Phys. Sin. 65 080703 (in Chinese)[权乃承, 张淳民, 穆廷魁 2016 65 080703]

    [21]

    Zhang C M, Mu T K, Ren W Y, Zhang L, Liu N 2010 Opt. Eng. 49 043002

    [22]

    Li Q W, Zhang C M, Wei Y T, Chen Q Y 2015 Acta Phys. Sin. 64 224206 (in Chinese)[李祺伟, 张淳民, 魏宇童, 陈清颖 2015 64 224206]

    [23]

    Bai C X, Li J X, Shen Y, Zhou J Q 2016 Opt. Lett. 41 3647

    [24]

    Yu D Y, Tan H Y 2015 Engineering Optics (Beijing:China Machine Press) p48 (in Chinese)[郁道银, 谈恒英 2015 工程光学 (北京:机械工业出版社) 第48页]

    [25]

    Lin L B 2007 M. S. Dissertation (Wuhan:Huazhong University of Science and Technology) (in Chinese)[林来宾 2007 硕士学位论文 (武汉:华中科技大学)]

    [26]

    Wu H Y, Zhang C M, Zhao B C 2009 Acta Phys. Sin. 58 930 (in Chinese)[吴海英, 张淳民, 赵葆常 2009 58 930]

  • [1]

    Posselt W, Holota K, Tittel H O, Harnisch B 2001 Proceedings of the Fourier Transform Spectroscopy Coeur d'Alene, Idaho, United States, February 5, 2001 FMD10

    [2]

    Ferrec Y, Taboury J, Sauer H, Chavel P, Fournet P, Coudrain C, Deschamps J, Primot J 2011 Appl. Opt. 50 5894

    [3]

    Wang W C, Liang J Q, Liang Z Z, L J G, Qin Y X, Tian C, Wang W B 2014 Opt. Lett. 39 4911

    [4]

    Rafert J B, Sellar R G, Holbert E, Blatt J, Tyler D W, Durham S, Newby H 1994 Proc. SPIE 2198 338

    [5]

    Barducci A, Guzzi D, Lastri C, Marcoionni P, Nardino V, Pippi I 2010 Opt. Express 18 11622

    [6]

    Cabib D, Lavi M, Gil A, Milman U 2011 Proc. SPIE 8012 80123H

    [7]

    Crites S T, Lucey P G, Wright R, Garbeil H, Horton K A, Wood M 2012 Proc. SPIE 8385 838509

    [8]

    Li J X, Bai C X, Shen Y, Xu D L 2016 Opt. Lett. 41 5329

    [9]

    Xiang L B, Yuan Y, L Q B 2009 Acta Phys. Sin. 58 5399 (in Chinese)[相里斌, 袁艳, 吕群波 2009 58 5399]

    [10]

    Horton R F 1996 Proc. SPIE 2819 300

    [11]

    Pisani M, Zucco M 2009 Opt. Express 17 8319

    [12]

    Bai C X, Li J X, Meng X, Shen Y, Zhu R H 2015 Acta Opt. Sin. 35 0811002 (in Chinese)[柏财勋, 李建欣, 孟鑫, 沈燕, 朱日宏 2015 光学学报 35 0811002]

    [13]

    Smith W H, Hammer P D 1996 Appl. Opt. 35 2902

    [14]

    Zhang C M, Xiangli B, Zhao B C, Yuan X J 2002 Opt. Commun. 203 21

    [15]

    Harvey A R, Fletcher-Holmes D W 2004 Opt. Express 12 5368

    [16]

    Craven J, Kudenov M W, Stapelbroek M G, Dereniak E L 2011 Appl. Opt. 50 1170

    [17]

    Mu T K, Zhang C M, Ren W Y, Jia C L 2012 Opt. Lett. 37 3507

    [18]

    Fossi A P, Ferrec Y, Roux N, D'almeida O, Guerineau N, Sauer H 2016 Opt. Lett. 41 1901

    [19]

    Li J, Zhu J P, Zhang Y Y, Liu H, Hou X 2013 Acta Phys. Sin. 62 024205 (in Chinese)[李杰, 朱京平, 张云尧, 刘宏, 侯洵 2013 62 024205]

    [20]

    Quan N C, Zhang C M, Mu T K 2016 Acta Phys. Sin. 65 080703 (in Chinese)[权乃承, 张淳民, 穆廷魁 2016 65 080703]

    [21]

    Zhang C M, Mu T K, Ren W Y, Zhang L, Liu N 2010 Opt. Eng. 49 043002

    [22]

    Li Q W, Zhang C M, Wei Y T, Chen Q Y 2015 Acta Phys. Sin. 64 224206 (in Chinese)[李祺伟, 张淳民, 魏宇童, 陈清颖 2015 64 224206]

    [23]

    Bai C X, Li J X, Shen Y, Zhou J Q 2016 Opt. Lett. 41 3647

    [24]

    Yu D Y, Tan H Y 2015 Engineering Optics (Beijing:China Machine Press) p48 (in Chinese)[郁道银, 谈恒英 2015 工程光学 (北京:机械工业出版社) 第48页]

    [25]

    Lin L B 2007 M. S. Dissertation (Wuhan:Huazhong University of Science and Technology) (in Chinese)[林来宾 2007 硕士学位论文 (武汉:华中科技大学)]

    [26]

    Wu H Y, Zhang C M, Zhao B C 2009 Acta Phys. Sin. 58 930 (in Chinese)[吴海英, 张淳民, 赵葆常 2009 58 930]

  • [1] 刘建鑫, 赵刚, 周月婷, 周晓彬, 马维光. 高反射腔镜双折射效应对腔增强光谱技术的影响.  , 2022, 71(8): 084202. doi: 10.7498/aps.71.20212090
    [2] 牛海莎, 祝连庆, 宋建军, 董明利, 娄小平. 激光器内腔频差对双折射外腔激光回馈系统输出影响的理论及实验研究.  , 2018, 67(15): 154201. doi: 10.7498/aps.67.20180230
    [3] 才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁. 外差式偏振干涉成像光谱技术研究.  , 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [4] 李长胜, 陈佳. 去除光学器件弹光双折射的方法.  , 2016, 65(3): 037801. doi: 10.7498/aps.65.037801
    [5] 耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊. 基于可调谐半导体激光吸收光谱的酒精蒸汽检测方法.  , 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [6] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪Ⅱ.光学设计与分析.  , 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [7] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪I.概念原理与操作.  , 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [8] 文峰, 武保剑, 李智, 李述标. 基于全光纤萨格纳克干涉仪的温度不敏感磁场测量.  , 2013, 62(13): 130701. doi: 10.7498/aps.62.130701
    [9] 王春龙, 刘建国, 赵南京, 马明俊, 王寅, 胡丽, 张大海, 余洋, 孟德硕, 章炜, 刘晶, 张玉钧, 刘文清. 水体重金属激光诱导击穿光谱定量分析方法对比研究.  , 2013, 62(12): 125201. doi: 10.7498/aps.62.125201
    [10] 李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国. 基于傅里叶变换红外光谱法CO2气体碳同位素比检测研究.  , 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [11] 付晓霞, 陈明阳. 用于太赫兹波传输的低损耗、高双折射光纤研究.  , 2011, 60(7): 074222. doi: 10.7498/aps.60.074222
    [12] 汪静丽, 姚建铨, 陈鹤鸣, 邴丕彬, 李忠洋, 钟凯. 高双折射的混合格子太赫兹光子晶体光纤的设计与研究.  , 2011, 60(10): 104219. doi: 10.7498/aps.60.104219
    [13] 穆廷魁, 张淳民, 任文艺, 张霖, 祝宝辉. 偏振干涉成像光谱仪的视场展宽设计与分析.  , 2011, 60(7): 070704. doi: 10.7498/aps.60.070704
    [14] 李阳月, 陈子阳, 刘辉, 蒲继雄. 涡旋光束的产生与干涉.  , 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
    [15] 简小华, 张淳民, 祝宝辉, 任文艺. 时空混合调制型偏振干涉成像光谱仪数据处理研究.  , 2010, 59(9): 6131-6137. doi: 10.7498/aps.59.6131
    [16] 杨倩倩, 侯蓝田. 八边形结构的双折射光子晶体光纤.  , 2009, 58(12): 8345-8351. doi: 10.7498/aps.58.8345
    [17] 付博, 李曙光, 姚艳艳, 张磊, 张美艳, 刘司英. 双芯高双折射光子晶体光纤耦合特性研究.  , 2009, 58(11): 7708-7715. doi: 10.7498/aps.58.7708
    [18] 吴海英, 张淳民, 赵葆常, 李英才. 改型Wollaston棱镜的光程差及其特性分析.  , 2009, 58(3): 1642-1647. doi: 10.7498/aps.58.1642
    [19] 穆廷魁, 张淳民, 赵葆常. 偏振干涉成像光谱仪中Wollaston棱镜光程差及条纹定位面的精确计算与分析.  , 2009, 58(6): 3877-3886. doi: 10.7498/aps.58.3877
    [20] 延凤平, 李一凡, 王 琳, 龚桃荣, 刘 鹏, 刘 洋, 陶沛琳, 曲美霞, 简水生. 近椭圆内包层高双折射偏振稳定光子晶体光纤设计及特性分析.  , 2008, 57(9): 5735-5741. doi: 10.7498/aps.57.5735
计量
  • 文章访问数:  5966
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-24
  • 修回日期:  2017-06-26
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map