搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效、偏振不敏感超导纳米线单光子探测器

张文英 胡鹏 肖游 李浩 尤立星

引用本文:
Citation:

高效、偏振不敏感超导纳米线单光子探测器

张文英, 胡鹏, 肖游, 李浩, 尤立星

High-efficiency polarization-insensitive superconducting nanowire single photon detector

Zhang Wen-Ying, Hu Peng, Xiao You, Li Hao, You Li-Xing
PDF
HTML
导出引用
  • 超导纳米线单光子探测器(SNSPD)因其优异的综合性能被广泛应用于量子通信等众多领域, 然而其独特的线性结构会导致SNSPD的探测效率对入射光的偏振态具有依赖性, 从而限制了SNSPD在非常规光纤链路或其他非相干光探测环境中的应用. 本文基于传统的回形纳米线结构设计制备了一种新型偏振不敏感SNSPD, 在纳米线周围引入一层高折射率Si薄膜作为介质补偿层来提高纳米线对垂直偏振态入射光的吸收效率, 并将补偿层的上表面设计为光栅结构以减小不同波长下纳米线对不同偏振态入射光的吸收差异从而实现在特定波长范围内的偏振不敏感. 除此之外, 还采用介质镜和双层纳米线结构来提高器件的光吸收效率, 测试结果表明该器件在1605 nm波长处最大探测效率为87%, 对应的偏振消光比为1.06. 该工作为未来实现高探测效率的偏振不敏感SNSPD提供了参考依据.
    Superconducting nanowire single photon detector (SNSPD) has been widely used in many fields such as quantum communication due to its extremely high detection efficiency, low dark count rate, high count rate, and low timing jitter. Compared with conventional single-photon detectors with planar structure, SNSPD is typically made a periodical meandering structure consisting of parallel straight nanowires. However, owing to its unique linear structure, the detection efficiency of SNSPD is dependent on the polarization state of incident light, thus limiting SNSPD’s applications in unconventional fiber links or other incoherent light detection. In this paper, a polarization-insensitive SNSPD with high detection efficiency is proposed based on the traditional meandering nanowire structure. A thin silicon film with a high refractive index is introduced as a cladding layer of nanowires to reduce the dielectric mismatch between the nanowire and its surroundings, thereby improving the optical absorption efficiency of nanowires to the transverse-magnetic (TM) polarized incident light. The cladding layer is designed as a sinusoidal-shaped grating structure to minimize the difference in optical absorption efficiency between the transverse electric (TE) polarized incident light and the TM polarized incident light in a wide wavelength range. In addition, the twin-layer nanowire structure and the dielectric mirror are used to improve the optical absorption efficiency of the device. Our simulation results show that with the optimal parameters, the optical absorption efficiency of nanowires to both of the TE polarized incident light and TM polarized incident light has a maximum of over 90% at 1550 nm, and the corresponding polarization extinction ratio is less than 1.22. The fabricated device possesses a maximum detection efficiency of 87% at 1605 nm and a polarization extinction ratio of 1.06. The measured detection efficiency exceeds 50% with a polarization extinction ratio less than 1.2 in a wavelength range from 1505 nm to 1630 nm. This work provides a reference for high-efficiency polarization-insensitive SNSPD in the future.
      通信作者: 李浩, lihao@mail.sim.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0304000)、国家自然科学基金(批准号: 61971408, 61827823)、上海市市级科技重大专项(批准号: 2019SHZDZX01)、上海市青年科技启明星项目(批准号: 20QA1410900)、中国科学院青年创新促进会项目(批准号: 2020241)和中国科学院空间主动光电技术重点实验室开放课题资助的课题
      Corresponding author: Li Hao, lihao@mail.sim.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304000), the National Natural Science Foundation of China (Grant Nos. 61971408, 61827823), the Science and Technology Major Project of Shanghai, China (Grant No. 2019SHZDZX01), the Shanghai Rising-Star Program, China (Grant No. 20QA1410900), the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2020241), and the Open Project of Key Laboratory of Space Active Optical-electro Technology, Chinese Academy of Sciences
    [1]

    Engel A, Renema J J, Il’in K, Semenov A 2015 Supercond. Sci. Technol. 28 114003Google Scholar

    [2]

    Miki S, Fujiwara M, Sasaki M, Baek B, Miller A J, Hadfield R H, Nam S W, Wang Z 2008 Appl. Phys. Lett. 92 061116Google Scholar

    [3]

    张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨 2011 60 038501Google Scholar

    Zhang L B, Kang L, Chen J, Zhao Q Y, Jia T, Xu W W, Cao C H, Jin B B, Wu P H 2011 Acta Phys. Sin. 60 038501Google Scholar

    [4]

    Hu P, Li H, You L X, Wang H Q, Xiao Y, Huang J, Yang X Y, Zhang W J, Wang Z, Xie X M 2020 Opt. Express 28 36884Google Scholar

    [5]

    Zhang W J, Yang X Y, Li H, et al. 2018 Supercond. Sci. Technol. 31 035012Google Scholar

    [6]

    Shibata H, Shimizu K, Takesue H, Tokura Y 2015 Opt. Lett. 40 3428Google Scholar

    [7]

    Zadeh I E, Los J W N, Gourgues R B M, et al. 2017 APL Photonics 2 111301Google Scholar

    [8]

    Zadeh I E, Los J W N, Gourgues R B M, et al. 2020 ACS Photonics 7 1780Google Scholar

    [9]

    Zhang W J, Huang J, Zhang C J, et al. 2019 IEEE Trans. Appl. Supercond. 29 2200204Google Scholar

    [10]

    Huang J, Zhang W J, You L X, Zhang C J, Lv C L, Wang Y, Liu X Y, Li H, Wang Z 2018 Supercond. Sci. Technol. 31 074001Google Scholar

    [11]

    张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜 2014 63 200303Google Scholar

    Zhang Q Y, Dong W H, He G F, Li T F, Liu J S, Chen W 2014 Acta Phys. Sin. 63 200303Google Scholar

    [12]

    Anant V, Kerman A J, Dauler E A, Yang J K W, Rosfjord K M, Berggren K K 2008 Opt. Express 16 10750Google Scholar

    [13]

    Hadfield R H, Habif J L, Schlafer J, Schwall R E, Nam S W 2006 Appl. phys. Lett. 89 241129Google Scholar

    [14]

    Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H, Xiong Y H 2016 Opt. Lett. 41 3848Google Scholar

    [15]

    Li H, Chen S J, You L X, et al. 2016 Opt. Express 24 3535Google Scholar

    [16]

    Shaw M D, Marsili F, Beyer A D, et al. 2015 Conference on Lasers and Electro-Optics (CLEO) California, USA, May 10–15, 2015 pJTh2A.68

    [17]

    刘锡民, 刘立人, 孙建锋, 郎海涛, 潘卫清, 赵栋 2005 54 5149Google Scholar

    Liu X M, Liu L R, Sun J F, Lang H T, Pan W Q, Zhao D 2005 Acta Phys. Sin. 54 5149Google Scholar

    [18]

    Zhou H, He Y H, You L X, Chen S J, Zhang W J, Wu J J, Wang Z, Xie X M 2015 Opt. Express 23 14603Google Scholar

    [19]

    Dorenbos S N, Reiger E M, Akopian N, Perinetti U, Zwiller V, Zijlstra T, Klapwijk T M 2008 Appl. Phys. Lett. 93 161102Google Scholar

    [20]

    Huang J, Zhang W J, You L X, et al. 2017 Supercond. Sci. Technol. 30 074004Google Scholar

    [21]

    Verma V B, Marsili F, Harrington S, Lita A E, Mirin R P, Nam S W 2012 Appl. Phys. Lett. 101 251114Google Scholar

    [22]

    Chi X M, Zou K, Gu C, et al. 2018 Opt. Lett. 43 5017Google Scholar

    [23]

    Meng, Y, Zou K, Hu Nan, Xu L, Lan X J, Steinhauer S, Gyger S, Zwiller V, Hu X L 2020 arXiv: 2012.06730v1[quant-ph]

    [24]

    Xu R Y, Z F, Qin D F, et al. 2017 J. Lightwave Technol. 35 4707Google Scholar

    [25]

    张曦 2012 硕士学位论文 (武汉: 华中科技大学)

    Zhang X 2012 M. S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [26]

    马佑桥, 周骏, 孙铁囤, 邸明东, 丁海芳 2010 太阳能学报 31 1353

    Ma Y Q, Zhou J, Sun T T, Di M D, Ding H F 2010 Acta Energiae Solaris Sinica 31 1353

    [27]

    Li H, Zhang W J, You L X, et al. 2014 IEEE J. Sel. Top. Quantum Electron. 20 198Google Scholar

  • 图 1  (a)采用Si补偿层和正弦形光栅结构的SNSPD横截面示意图, 双层纳米线结构被制备在DBR上; (b)双层纳米线SNSPD光吸收效率随波长变化的仿真结果, 实线代表只叠加Si补偿层的SNSPD, 虚线代表裸纳米线SNSPD

    Fig. 1.  (a) Cross-sectional schematic of the SNSPD with a Si compensation layer and a sinusoidal grating structure, the twin layer nanowire structure was prepared on a DBR; (b) simulated optical absorption as a function of the wavelength of the SNSPD with the twin-layer nanowires, solid lines denote the SNSPD only with a Si compensation layer, and dashed lines denote the SNSPD with bare nanowires.

    图 2  引入正弦形光栅的偏振不敏感SNSPD光吸收效率随波长变化的仿真结果

    Fig. 2.  Simulated optical absorption as a function of the wavelength of the polarization-insensitive SNSPD with the sinusoidal-shaped grating.

    图 3  (a) SNSPD光敏面SEM图; (b)高度放大的双层纳米线SEM图; (c) SNSPD横截面TEM图, Si薄膜总厚度约为231 nm; (d)高度放大的双层纳米线TEM图, 过刻深度约6.5 nm; (e)高度放大的正弦形光栅TEM图, 光栅高度为22 nm

    Fig. 3.  (a) SEM image of the active area of the SNSPD; (b) magnified SEM image of the the twin-layer nanowires; (c) TEM image of the cross-section of the SNSPD with a 231 nm-thick Si film; (d) magnified TEM image of the twin-layer nanowires with an over-etched depth of 6.5 nm; (e) magnified TEM image of the sinusoidal grating with a height of 22 nm.

    图 4  SNSPD测试系统示意图

    Fig. 4.  Schematic of the measurement system used to characterize the SNSPD.

    图 5  (a)偏振不敏感SNSPD的SDE光谱响应, 插图显示了偏振不敏感SNSPD和裸纳米线SNSPD的PER光谱响应对比; (b)偏振不敏感SNSPD在1605 nm处探测效率随偏置电流变化的曲线

    Fig. 5.  (a) Spectral responses of SDE for the polarization-insensitive SNSPD, the inset shows a comparison of the spectral responses of PER for the polarization-insensitive SNSPD and the SNSPD with bare nanowires; (b) system detection efficiency curves as a function of the bias current at 1605 nm for the polarization-insensitive SNSPD.

    Baidu
  • [1]

    Engel A, Renema J J, Il’in K, Semenov A 2015 Supercond. Sci. Technol. 28 114003Google Scholar

    [2]

    Miki S, Fujiwara M, Sasaki M, Baek B, Miller A J, Hadfield R H, Nam S W, Wang Z 2008 Appl. Phys. Lett. 92 061116Google Scholar

    [3]

    张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨 2011 60 038501Google Scholar

    Zhang L B, Kang L, Chen J, Zhao Q Y, Jia T, Xu W W, Cao C H, Jin B B, Wu P H 2011 Acta Phys. Sin. 60 038501Google Scholar

    [4]

    Hu P, Li H, You L X, Wang H Q, Xiao Y, Huang J, Yang X Y, Zhang W J, Wang Z, Xie X M 2020 Opt. Express 28 36884Google Scholar

    [5]

    Zhang W J, Yang X Y, Li H, et al. 2018 Supercond. Sci. Technol. 31 035012Google Scholar

    [6]

    Shibata H, Shimizu K, Takesue H, Tokura Y 2015 Opt. Lett. 40 3428Google Scholar

    [7]

    Zadeh I E, Los J W N, Gourgues R B M, et al. 2017 APL Photonics 2 111301Google Scholar

    [8]

    Zadeh I E, Los J W N, Gourgues R B M, et al. 2020 ACS Photonics 7 1780Google Scholar

    [9]

    Zhang W J, Huang J, Zhang C J, et al. 2019 IEEE Trans. Appl. Supercond. 29 2200204Google Scholar

    [10]

    Huang J, Zhang W J, You L X, Zhang C J, Lv C L, Wang Y, Liu X Y, Li H, Wang Z 2018 Supercond. Sci. Technol. 31 074001Google Scholar

    [11]

    张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜 2014 63 200303Google Scholar

    Zhang Q Y, Dong W H, He G F, Li T F, Liu J S, Chen W 2014 Acta Phys. Sin. 63 200303Google Scholar

    [12]

    Anant V, Kerman A J, Dauler E A, Yang J K W, Rosfjord K M, Berggren K K 2008 Opt. Express 16 10750Google Scholar

    [13]

    Hadfield R H, Habif J L, Schlafer J, Schwall R E, Nam S W 2006 Appl. phys. Lett. 89 241129Google Scholar

    [14]

    Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H, Xiong Y H 2016 Opt. Lett. 41 3848Google Scholar

    [15]

    Li H, Chen S J, You L X, et al. 2016 Opt. Express 24 3535Google Scholar

    [16]

    Shaw M D, Marsili F, Beyer A D, et al. 2015 Conference on Lasers and Electro-Optics (CLEO) California, USA, May 10–15, 2015 pJTh2A.68

    [17]

    刘锡民, 刘立人, 孙建锋, 郎海涛, 潘卫清, 赵栋 2005 54 5149Google Scholar

    Liu X M, Liu L R, Sun J F, Lang H T, Pan W Q, Zhao D 2005 Acta Phys. Sin. 54 5149Google Scholar

    [18]

    Zhou H, He Y H, You L X, Chen S J, Zhang W J, Wu J J, Wang Z, Xie X M 2015 Opt. Express 23 14603Google Scholar

    [19]

    Dorenbos S N, Reiger E M, Akopian N, Perinetti U, Zwiller V, Zijlstra T, Klapwijk T M 2008 Appl. Phys. Lett. 93 161102Google Scholar

    [20]

    Huang J, Zhang W J, You L X, et al. 2017 Supercond. Sci. Technol. 30 074004Google Scholar

    [21]

    Verma V B, Marsili F, Harrington S, Lita A E, Mirin R P, Nam S W 2012 Appl. Phys. Lett. 101 251114Google Scholar

    [22]

    Chi X M, Zou K, Gu C, et al. 2018 Opt. Lett. 43 5017Google Scholar

    [23]

    Meng, Y, Zou K, Hu Nan, Xu L, Lan X J, Steinhauer S, Gyger S, Zwiller V, Hu X L 2020 arXiv: 2012.06730v1[quant-ph]

    [24]

    Xu R Y, Z F, Qin D F, et al. 2017 J. Lightwave Technol. 35 4707Google Scholar

    [25]

    张曦 2012 硕士学位论文 (武汉: 华中科技大学)

    Zhang X 2012 M. S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [26]

    马佑桥, 周骏, 孙铁囤, 邸明东, 丁海芳 2010 太阳能学报 31 1353

    Ma Y Q, Zhou J, Sun T T, Di M D, Ding H F 2010 Acta Energiae Solaris Sinica 31 1353

    [27]

    Li H, Zhang W J, You L X, et al. 2014 IEEE J. Sel. Top. Quantum Electron. 20 198Google Scholar

  • [1] 周飞, 陈奇, 刘浩, 戴越, 魏晨, 袁杭, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 张蜡宝, 吴培亨. 基于超导单光子探测器的红外光学系统噪声分析和优化.  , 2024, 73(6): 068501. doi: 10.7498/aps.73.20231526
    [2] 陈志刚, 张伟君, 张兴雨, 王钰泽, 熊佳敏, 洪逸裕, 原蒲升, 吴玲, 王镇, 尤立星. 基于运算放大器的超导纳米线单光子探测器低温直流耦合读出电路.  , 2024, 73(13): 138501. doi: 10.7498/aps.73.20240398
    [3] 何广龙, 薛莉, 吴诚, 李慧, 印睿, 董大兴, 王昊, 徐迟, 黄慧鑫, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 夏凌昊, 张蜡宝, 吴培亨. 面向机载平台的小型超导单光子探测系统.  , 2023, 72(9): 098501. doi: 10.7498/aps.72.20230248
    [4] 郗玲玲, 杨晓燕, 张天柱, 肖游, 尤立星, 李浩. 高综合性能超导纳米线单光子探测器.  , 2023, 72(11): 118501. doi: 10.7498/aps.72.20230326
    [5] 陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨. 5—10 µm波段超导单光子探测器设计与研制.  , 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [6] 马璐瑶, 张兴雨, 舒志运, 肖游, 张天柱, 李浩, 尤立星. 自差分交流偏置超导纳米线单光子探测器.  , 2022, 71(15): 158501. doi: 10.7498/aps.71.20220373
    [7] 张笑, 吕嘉煜, 管焰秋, 李慧, 王锡明, 张蜡宝, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 吴培亨. 超大面积超导纳米线阵列单光子探测器设计与制备.  , 2022, 71(24): 248501. doi: 10.7498/aps.71.20221569
    [8] 黄典, 戴万霖, 王轶文, 贺青, 韦联福. 超导动态电感单光子探测器的噪声处理.  , 2021, 70(14): 140703. doi: 10.7498/aps.70.20210185
    [9] 张彪, 陈奇, 管焰秋, 靳飞飞, 王昊, 张蜡宝, 涂学凑, 赵清源, 贾小氢, 康琳, 陈健, 吴培亨. 超导纳米线单光子探测器光子响应机制研究进展.  , 2021, 70(19): 198501. doi: 10.7498/aps.70.20210652
    [10] 李诗宇, 田剑锋, 杨晨, 左冠华, 张玉驰, 张天才. 探测器对量子增强马赫-曾德尔干涉仪相位测量灵敏度的影响.  , 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [11] 刘顺瑞, 聂照庭, 张明磊, 王丽, 冷雁冰, 孙艳军. 利用纳米球提高红外波长上转换探测器效率.  , 2017, 66(18): 188501. doi: 10.7498/aps.66.188501
    [12] 闫夏超, 朱江, 张蜡宝, 邢强林, 陈亚军, 朱宏权, 李舰艇, 康琳, 陈健, 吴培亨. 基于超导纳米线单光子探测器深空激光通信模型及误码率研究.  , 2017, 66(19): 198501. doi: 10.7498/aps.66.198501
    [13] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响.  , 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [14] 王胜, 李航, 曹超, 吴洋, 霍合勇, 唐彬. 新型热中子敏感微通道板探测效率的蒙特-卡罗模拟研究.  , 2015, 64(10): 102801. doi: 10.7498/aps.64.102801
    [15] 刘桐君, 习翔, 令永红, 孙雅丽, 李志伟, 黄黎蓉. 宽入射角度偏振不敏感高效异常反射梯度超表面.  , 2015, 64(23): 237802. doi: 10.7498/aps.64.237802
    [16] 张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜. 超导转变边沿单光子探测器原理与研究进展.  , 2014, 63(20): 200303. doi: 10.7498/aps.63.200303
    [17] 邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名. 基于超材料的偏振不敏感太赫兹宽带吸波体设计.  , 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
    [18] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器.  , 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [19] 孙志斌, 马海强, 雷 鸣, 杨捍东, 吴令安, 翟光杰, 冯 稷. 近红外单光子探测器.  , 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [20] 常君弢, 吴令安. 单光子探测器量子效率的绝对自身标定方法.  , 2003, 52(5): 1132-1136. doi: 10.7498/aps.52.1132
计量
  • 文章访问数:  5853
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-12
  • 修回日期:  2021-03-25
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回
Baidu
map