-
超导纳米线单光子探测器(SNSPD)因其优异的综合性能被广泛应用于量子通信等众多领域, 然而其独特的线性结构会导致SNSPD的探测效率对入射光的偏振态具有依赖性, 从而限制了SNSPD在非常规光纤链路或其他非相干光探测环境中的应用. 本文基于传统的回形纳米线结构设计制备了一种新型偏振不敏感SNSPD, 在纳米线周围引入一层高折射率Si薄膜作为介质补偿层来提高纳米线对垂直偏振态入射光的吸收效率, 并将补偿层的上表面设计为光栅结构以减小不同波长下纳米线对不同偏振态入射光的吸收差异从而实现在特定波长范围内的偏振不敏感. 除此之外, 还采用介质镜和双层纳米线结构来提高器件的光吸收效率, 测试结果表明该器件在1605 nm波长处最大探测效率为87%, 对应的偏振消光比为1.06. 该工作为未来实现高探测效率的偏振不敏感SNSPD提供了参考依据.
-
关键词:
- 超导纳米线单光子探测器 /
- 探测效率 /
- 偏振不敏感
Superconducting nanowire single photon detector (SNSPD) has been widely used in many fields such as quantum communication due to its extremely high detection efficiency, low dark count rate, high count rate, and low timing jitter. Compared with conventional single-photon detectors with planar structure, SNSPD is typically made a periodical meandering structure consisting of parallel straight nanowires. However, owing to its unique linear structure, the detection efficiency of SNSPD is dependent on the polarization state of incident light, thus limiting SNSPD’s applications in unconventional fiber links or other incoherent light detection. In this paper, a polarization-insensitive SNSPD with high detection efficiency is proposed based on the traditional meandering nanowire structure. A thin silicon film with a high refractive index is introduced as a cladding layer of nanowires to reduce the dielectric mismatch between the nanowire and its surroundings, thereby improving the optical absorption efficiency of nanowires to the transverse-magnetic (TM) polarized incident light. The cladding layer is designed as a sinusoidal-shaped grating structure to minimize the difference in optical absorption efficiency between the transverse electric (TE) polarized incident light and the TM polarized incident light in a wide wavelength range. In addition, the twin-layer nanowire structure and the dielectric mirror are used to improve the optical absorption efficiency of the device. Our simulation results show that with the optimal parameters, the optical absorption efficiency of nanowires to both of the TE polarized incident light and TM polarized incident light has a maximum of over 90% at 1550 nm, and the corresponding polarization extinction ratio is less than 1.22. The fabricated device possesses a maximum detection efficiency of 87% at 1605 nm and a polarization extinction ratio of 1.06. The measured detection efficiency exceeds 50% with a polarization extinction ratio less than 1.2 in a wavelength range from 1505 nm to 1630 nm. This work provides a reference for high-efficiency polarization-insensitive SNSPD in the future.-
Keywords:
- superconducting nanowire single photon detector /
- detection efficiency /
- polarization-insensitive
[1] Engel A, Renema J J, Il’in K, Semenov A 2015 Supercond. Sci. Technol. 28 114003Google Scholar
[2] Miki S, Fujiwara M, Sasaki M, Baek B, Miller A J, Hadfield R H, Nam S W, Wang Z 2008 Appl. Phys. Lett. 92 061116Google Scholar
[3] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨 2011 60 038501Google Scholar
Zhang L B, Kang L, Chen J, Zhao Q Y, Jia T, Xu W W, Cao C H, Jin B B, Wu P H 2011 Acta Phys. Sin. 60 038501Google Scholar
[4] Hu P, Li H, You L X, Wang H Q, Xiao Y, Huang J, Yang X Y, Zhang W J, Wang Z, Xie X M 2020 Opt. Express 28 36884Google Scholar
[5] Zhang W J, Yang X Y, Li H, et al. 2018 Supercond. Sci. Technol. 31 035012Google Scholar
[6] Shibata H, Shimizu K, Takesue H, Tokura Y 2015 Opt. Lett. 40 3428Google Scholar
[7] Zadeh I E, Los J W N, Gourgues R B M, et al. 2017 APL Photonics 2 111301Google Scholar
[8] Zadeh I E, Los J W N, Gourgues R B M, et al. 2020 ACS Photonics 7 1780Google Scholar
[9] Zhang W J, Huang J, Zhang C J, et al. 2019 IEEE Trans. Appl. Supercond. 29 2200204Google Scholar
[10] Huang J, Zhang W J, You L X, Zhang C J, Lv C L, Wang Y, Liu X Y, Li H, Wang Z 2018 Supercond. Sci. Technol. 31 074001Google Scholar
[11] 张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜 2014 63 200303Google Scholar
Zhang Q Y, Dong W H, He G F, Li T F, Liu J S, Chen W 2014 Acta Phys. Sin. 63 200303Google Scholar
[12] Anant V, Kerman A J, Dauler E A, Yang J K W, Rosfjord K M, Berggren K K 2008 Opt. Express 16 10750Google Scholar
[13] Hadfield R H, Habif J L, Schlafer J, Schwall R E, Nam S W 2006 Appl. phys. Lett. 89 241129Google Scholar
[14] Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H, Xiong Y H 2016 Opt. Lett. 41 3848Google Scholar
[15] Li H, Chen S J, You L X, et al. 2016 Opt. Express 24 3535Google Scholar
[16] Shaw M D, Marsili F, Beyer A D, et al. 2015 Conference on Lasers and Electro-Optics (CLEO) California, USA, May 10–15, 2015 pJTh2A.68
[17] 刘锡民, 刘立人, 孙建锋, 郎海涛, 潘卫清, 赵栋 2005 54 5149Google Scholar
Liu X M, Liu L R, Sun J F, Lang H T, Pan W Q, Zhao D 2005 Acta Phys. Sin. 54 5149Google Scholar
[18] Zhou H, He Y H, You L X, Chen S J, Zhang W J, Wu J J, Wang Z, Xie X M 2015 Opt. Express 23 14603Google Scholar
[19] Dorenbos S N, Reiger E M, Akopian N, Perinetti U, Zwiller V, Zijlstra T, Klapwijk T M 2008 Appl. Phys. Lett. 93 161102Google Scholar
[20] Huang J, Zhang W J, You L X, et al. 2017 Supercond. Sci. Technol. 30 074004Google Scholar
[21] Verma V B, Marsili F, Harrington S, Lita A E, Mirin R P, Nam S W 2012 Appl. Phys. Lett. 101 251114Google Scholar
[22] Chi X M, Zou K, Gu C, et al. 2018 Opt. Lett. 43 5017Google Scholar
[23] Meng, Y, Zou K, Hu Nan, Xu L, Lan X J, Steinhauer S, Gyger S, Zwiller V, Hu X L 2020 arXiv: 2012.06730v1[quant-ph]
[24] Xu R Y, Z F, Qin D F, et al. 2017 J. Lightwave Technol. 35 4707Google Scholar
[25] 张曦 2012 硕士学位论文 (武汉: 华中科技大学)
Zhang X 2012 M. S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[26] 马佑桥, 周骏, 孙铁囤, 邸明东, 丁海芳 2010 太阳能学报 31 1353
Ma Y Q, Zhou J, Sun T T, Di M D, Ding H F 2010 Acta Energiae Solaris Sinica 31 1353
[27] Li H, Zhang W J, You L X, et al. 2014 IEEE J. Sel. Top. Quantum Electron. 20 198Google Scholar
-
图 1 (a)采用Si补偿层和正弦形光栅结构的SNSPD横截面示意图, 双层纳米线结构被制备在DBR上; (b)双层纳米线SNSPD光吸收效率随波长变化的仿真结果, 实线代表只叠加Si补偿层的SNSPD, 虚线代表裸纳米线SNSPD
Fig. 1. (a) Cross-sectional schematic of the SNSPD with a Si compensation layer and a sinusoidal grating structure, the twin layer nanowire structure was prepared on a DBR; (b) simulated optical absorption as a function of the wavelength of the SNSPD with the twin-layer nanowires, solid lines denote the SNSPD only with a Si compensation layer, and dashed lines denote the SNSPD with bare nanowires.
图 3 (a) SNSPD光敏面SEM图; (b)高度放大的双层纳米线SEM图; (c) SNSPD横截面TEM图, Si薄膜总厚度约为231 nm; (d)高度放大的双层纳米线TEM图, 过刻深度约6.5 nm; (e)高度放大的正弦形光栅TEM图, 光栅高度为22 nm
Fig. 3. (a) SEM image of the active area of the SNSPD; (b) magnified SEM image of the the twin-layer nanowires; (c) TEM image of the cross-section of the SNSPD with a 231 nm-thick Si film; (d) magnified TEM image of the twin-layer nanowires with an over-etched depth of 6.5 nm; (e) magnified TEM image of the sinusoidal grating with a height of 22 nm.
图 5 (a)偏振不敏感SNSPD的SDE光谱响应, 插图显示了偏振不敏感SNSPD和裸纳米线SNSPD的PER光谱响应对比; (b)偏振不敏感SNSPD在1605 nm处探测效率随偏置电流变化的曲线
Fig. 5. (a) Spectral responses of SDE for the polarization-insensitive SNSPD, the inset shows a comparison of the spectral responses of PER for the polarization-insensitive SNSPD and the SNSPD with bare nanowires; (b) system detection efficiency curves as a function of the bias current at 1605 nm for the polarization-insensitive SNSPD.
-
[1] Engel A, Renema J J, Il’in K, Semenov A 2015 Supercond. Sci. Technol. 28 114003Google Scholar
[2] Miki S, Fujiwara M, Sasaki M, Baek B, Miller A J, Hadfield R H, Nam S W, Wang Z 2008 Appl. Phys. Lett. 92 061116Google Scholar
[3] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨 2011 60 038501Google Scholar
Zhang L B, Kang L, Chen J, Zhao Q Y, Jia T, Xu W W, Cao C H, Jin B B, Wu P H 2011 Acta Phys. Sin. 60 038501Google Scholar
[4] Hu P, Li H, You L X, Wang H Q, Xiao Y, Huang J, Yang X Y, Zhang W J, Wang Z, Xie X M 2020 Opt. Express 28 36884Google Scholar
[5] Zhang W J, Yang X Y, Li H, et al. 2018 Supercond. Sci. Technol. 31 035012Google Scholar
[6] Shibata H, Shimizu K, Takesue H, Tokura Y 2015 Opt. Lett. 40 3428Google Scholar
[7] Zadeh I E, Los J W N, Gourgues R B M, et al. 2017 APL Photonics 2 111301Google Scholar
[8] Zadeh I E, Los J W N, Gourgues R B M, et al. 2020 ACS Photonics 7 1780Google Scholar
[9] Zhang W J, Huang J, Zhang C J, et al. 2019 IEEE Trans. Appl. Supercond. 29 2200204Google Scholar
[10] Huang J, Zhang W J, You L X, Zhang C J, Lv C L, Wang Y, Liu X Y, Li H, Wang Z 2018 Supercond. Sci. Technol. 31 074001Google Scholar
[11] 张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜 2014 63 200303Google Scholar
Zhang Q Y, Dong W H, He G F, Li T F, Liu J S, Chen W 2014 Acta Phys. Sin. 63 200303Google Scholar
[12] Anant V, Kerman A J, Dauler E A, Yang J K W, Rosfjord K M, Berggren K K 2008 Opt. Express 16 10750Google Scholar
[13] Hadfield R H, Habif J L, Schlafer J, Schwall R E, Nam S W 2006 Appl. phys. Lett. 89 241129Google Scholar
[14] Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H, Xiong Y H 2016 Opt. Lett. 41 3848Google Scholar
[15] Li H, Chen S J, You L X, et al. 2016 Opt. Express 24 3535Google Scholar
[16] Shaw M D, Marsili F, Beyer A D, et al. 2015 Conference on Lasers and Electro-Optics (CLEO) California, USA, May 10–15, 2015 pJTh2A.68
[17] 刘锡民, 刘立人, 孙建锋, 郎海涛, 潘卫清, 赵栋 2005 54 5149Google Scholar
Liu X M, Liu L R, Sun J F, Lang H T, Pan W Q, Zhao D 2005 Acta Phys. Sin. 54 5149Google Scholar
[18] Zhou H, He Y H, You L X, Chen S J, Zhang W J, Wu J J, Wang Z, Xie X M 2015 Opt. Express 23 14603Google Scholar
[19] Dorenbos S N, Reiger E M, Akopian N, Perinetti U, Zwiller V, Zijlstra T, Klapwijk T M 2008 Appl. Phys. Lett. 93 161102Google Scholar
[20] Huang J, Zhang W J, You L X, et al. 2017 Supercond. Sci. Technol. 30 074004Google Scholar
[21] Verma V B, Marsili F, Harrington S, Lita A E, Mirin R P, Nam S W 2012 Appl. Phys. Lett. 101 251114Google Scholar
[22] Chi X M, Zou K, Gu C, et al. 2018 Opt. Lett. 43 5017Google Scholar
[23] Meng, Y, Zou K, Hu Nan, Xu L, Lan X J, Steinhauer S, Gyger S, Zwiller V, Hu X L 2020 arXiv: 2012.06730v1[quant-ph]
[24] Xu R Y, Z F, Qin D F, et al. 2017 J. Lightwave Technol. 35 4707Google Scholar
[25] 张曦 2012 硕士学位论文 (武汉: 华中科技大学)
Zhang X 2012 M. S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[26] 马佑桥, 周骏, 孙铁囤, 邸明东, 丁海芳 2010 太阳能学报 31 1353
Ma Y Q, Zhou J, Sun T T, Di M D, Ding H F 2010 Acta Energiae Solaris Sinica 31 1353
[27] Li H, Zhang W J, You L X, et al. 2014 IEEE J. Sel. Top. Quantum Electron. 20 198Google Scholar
计量
- 文章访问数: 5853
- PDF下载量: 145
- 被引次数: 0