Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis and photoluminescence property of hexangular star MoSe2 bilayer

Huang Jing-Wen Luo Li-Qiong Jin Bo Chu Shi-Jin Peng Ru-Fang

Citation:

Synthesis and photoluminescence property of hexangular star MoSe2 bilayer

Huang Jing-Wen, Luo Li-Qiong, Jin Bo, Chu Shi-Jin, Peng Ru-Fang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Transition metal dichalcogenides (TMDs) have received widespread attention because of their excellent performances in the field of optoelectronic, nanoelectronic device and photocatalytic exploration. The structures of TMDs can be expressed by the MX2, M=Mo, W; X=S, Se, Te, etc. As a typical TMD, MoSe2 has a graphene-like two-dimensional periodic structure with perfect physical, photoelcrtonic and catalytic properties. Currently, there are various methods to prepare the nanolevel MoSe2, such as the mechanical exfoliation, physical vapor deposition (PVD), hydrothermal method, chemical vapor deposition (CVD), etc, and most studies focused on regular triangular morphologies of the surfaces of different substrates. The new morphology, such as the hexangular star bilayer, has not been systematically investigated. In this study, the hexangular star MoSe2 nanosheets are successfully synthesized by using a simple CVD method in an atmosphere of mixed H2/Ar with a flow rate ratio of 1:4. Molybdenum trioxide(MoO3) and selenium (Se) powders are chosen to be the Mo and Se source, respectively. Moreover, the structure of the obtained MoSe2 nanosheet is characterized by Raman, SEM, EDS, XRD and TEM. The results of Raman spectrum and SEM indicate that the hexangular star MoSe2 possesses a bilayer structure. The TEM characterization reveals that the MoSe2 is a single crystal with a hexagonal lattice structure and good quality. The heating time at high temperature has a remarkable influence on the MoSe2 bilayer growth process. The growth process of the hexangular star MoSe2 bilayer is inferred to experience a three-step process. First, Mo and Se sources are gasified into gaseous molecules and then the Mo molecules are selenized into the MoSe2 crystal nucleus under high temperature. Next, these crystal nucleus are in a triangular epitaxial growth under the action of carrier gas. As heating time increases, the space steric effect leads to different interlayer separations between the two MoSe2 layers in various stacking configurations, eventually forming a hexangular star bilayer. The PL result shows that the spectra split into two main emission peaks, i.e., the direct and indirect bandgaps of the hexangular star structure appearing at 1.53 eV (810.2 nm) and 1.78 eV (696.9 nm), respectively. It might be due to the spin-orbit coupling interaction between the double MoSe2 molecules. The wide spectral range of the MoSe2 bilayer indicates that it has a potencial application in the photoelectric detectors.
      Corresponding author: Peng Ru-Fang, rfpeng2006@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.51327804) and Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional,China (Grant No.14tdfk05).
    [1]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [2]

    Lin J, Zhong J Q, Zhong S, Li H, Zhang H, Chen W 2013 Appl. Phys. Lett. 103 063109

    [3]

    Najmaei S, Liu Z, Zhou W, Zou X L, Shi G, Lei S D, Yakobson B I, Idrobo J C, Ajayan P M, Lou J 2013 Nat. Mater. 12 754

    [4]

    Zhan Y J, Liu Z, Najmaei S, Ajayan P M, Lou J 2012 Small 8 966

    [5]

    Ji Q Q, Zhang Y, Zhang Y F, Liu Z F 2015 Chem. Soc. Rev. 44 2587

    [6]

    Dong Y F, He D W, Wang Y S, Xu H T, Gong Z 2016 Acta Phys. Sin. 65 128101 (in Chinese)[董艳芳, 何大伟, 王永生, 徐海涛, 巩哲 2016 65 128101]

    [7]

    Wang B B, Zhu K, Wang Q 2016 Acta Phys. Sin. 65 038102 (in Chinese)[王必本, 朱恪, 王强 2016 65 038102]

    [8]

    Roy A, Movva H C P, Satpati B, Kim K, Dey R, Rai A, Pramanik T, Guchhait S, Tutuc E, Banerjee S K 2016 ACS Appl. Mater. Interfaces 8 7396

    [9]

    Tang H, Dou K P, Kaun C C, Kuang Q, Yang S H 2014 J. Mater. Chem. A 2 360

    [10]

    Larentis S, Fallahazad B, Tutuc E 2012 Appl. Phys. Lett. 101 223104

    [11]

    Ullah F, Nguyen T K, Le C T, Kim Y S 2016 CrystEngComm 18 6992

    [12]

    Tang H, Huang H, Wang X S, Wu K Q, Tang G G, Li C S 2016 Appl. Surf. Sci. 379 296

    [13]

    Chen Z X, Liu H Q, Chen X C, Chu G, Chu S, Zhang H 2016 ACS Appl. Mater. Interfaces 8 20267

    [14]

    Wang X L, Gong Y J, Shi G, Chow W L, Keyshar K, Ye G L, Vajtai R, Lou J, Liu Z, Ringe E B, Tay B K, Ajayan P M 2014 ACS Nano 8 5125

    [15]

    Shaw J C, Zhou H L, Chen Y, Weiss N O, Liu Y, Huang Y, Duan X F 2014 Nano Res. 7 511

    [16]

    Chang Y H, Zhang W J, Zhu Y H, Han Y, Pu J, Chang J K, Hsu W T, Huang J K, Hsu C L, Chiu M H, Takenobu T S, Li H N, Wu C, Chang W H, Wee A T S, Li L J 2014 ACS Nano 8 8582

    [17]

    Liu H Q, Chen Z X, Chen X C, Chu S, Huang J W, Peng R F 2016 J. Mater. Chem. 4 9399

    [18]

    Huang J, Yang L, Liu D, Chen J J, Fu Q, Xiong Y J, Lin F, Xiang B 2015 Nanoscale 7 4193

    [19]

    Tonndorf P, Schmidt R, Böttger P, Zhang X, Börner J, Liebig A, Albrecht M, Kloc C, Gordan O, Zahn D R T, Michaelis S, Bratschiitsch R 2013 Opt. Express 21 4908

    [20]

    Coehoorn R, Haas C, Dijkstra J, Flipse C J F, Groot R A D 1987 Phys. Rev. B 35 6195

    [21]

    Bissessur R, Xu H 2009 Mat. Chem. Phys. 117 335

    [22]

    Zha L Y, Fang L, Peng X Y 2015 Acta Phys. Sin. 64 018710 (in Chinese)[张理勇, 方粮, 彭向阳 2015 64 018710]

    [23]

    Liu K H, Zhang L M, Cao T, Jin C H, Qiu D N, Zhou Q, Zettl A, Yang P D, Louie S G, Wang F 2014 Nat. Commun. 5 4966

    [24]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, Wu J Q 2012 Nano Lett. 12 5576

    [25]

    Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 13

    [26]

    Liu Z, Amani M, Najmaei S, Xu Q, Zou X L, Zhou W, Yu T, Qiu C Y, Birdwell A G, Crowne F J, Vajtai R, Yakobson B I, Xia Z H, Dubey M, Ajayan P M, Lou J 2014 Nat. Commun. 5 5246

  • [1]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [2]

    Lin J, Zhong J Q, Zhong S, Li H, Zhang H, Chen W 2013 Appl. Phys. Lett. 103 063109

    [3]

    Najmaei S, Liu Z, Zhou W, Zou X L, Shi G, Lei S D, Yakobson B I, Idrobo J C, Ajayan P M, Lou J 2013 Nat. Mater. 12 754

    [4]

    Zhan Y J, Liu Z, Najmaei S, Ajayan P M, Lou J 2012 Small 8 966

    [5]

    Ji Q Q, Zhang Y, Zhang Y F, Liu Z F 2015 Chem. Soc. Rev. 44 2587

    [6]

    Dong Y F, He D W, Wang Y S, Xu H T, Gong Z 2016 Acta Phys. Sin. 65 128101 (in Chinese)[董艳芳, 何大伟, 王永生, 徐海涛, 巩哲 2016 65 128101]

    [7]

    Wang B B, Zhu K, Wang Q 2016 Acta Phys. Sin. 65 038102 (in Chinese)[王必本, 朱恪, 王强 2016 65 038102]

    [8]

    Roy A, Movva H C P, Satpati B, Kim K, Dey R, Rai A, Pramanik T, Guchhait S, Tutuc E, Banerjee S K 2016 ACS Appl. Mater. Interfaces 8 7396

    [9]

    Tang H, Dou K P, Kaun C C, Kuang Q, Yang S H 2014 J. Mater. Chem. A 2 360

    [10]

    Larentis S, Fallahazad B, Tutuc E 2012 Appl. Phys. Lett. 101 223104

    [11]

    Ullah F, Nguyen T K, Le C T, Kim Y S 2016 CrystEngComm 18 6992

    [12]

    Tang H, Huang H, Wang X S, Wu K Q, Tang G G, Li C S 2016 Appl. Surf. Sci. 379 296

    [13]

    Chen Z X, Liu H Q, Chen X C, Chu G, Chu S, Zhang H 2016 ACS Appl. Mater. Interfaces 8 20267

    [14]

    Wang X L, Gong Y J, Shi G, Chow W L, Keyshar K, Ye G L, Vajtai R, Lou J, Liu Z, Ringe E B, Tay B K, Ajayan P M 2014 ACS Nano 8 5125

    [15]

    Shaw J C, Zhou H L, Chen Y, Weiss N O, Liu Y, Huang Y, Duan X F 2014 Nano Res. 7 511

    [16]

    Chang Y H, Zhang W J, Zhu Y H, Han Y, Pu J, Chang J K, Hsu W T, Huang J K, Hsu C L, Chiu M H, Takenobu T S, Li H N, Wu C, Chang W H, Wee A T S, Li L J 2014 ACS Nano 8 8582

    [17]

    Liu H Q, Chen Z X, Chen X C, Chu S, Huang J W, Peng R F 2016 J. Mater. Chem. 4 9399

    [18]

    Huang J, Yang L, Liu D, Chen J J, Fu Q, Xiong Y J, Lin F, Xiang B 2015 Nanoscale 7 4193

    [19]

    Tonndorf P, Schmidt R, Böttger P, Zhang X, Börner J, Liebig A, Albrecht M, Kloc C, Gordan O, Zahn D R T, Michaelis S, Bratschiitsch R 2013 Opt. Express 21 4908

    [20]

    Coehoorn R, Haas C, Dijkstra J, Flipse C J F, Groot R A D 1987 Phys. Rev. B 35 6195

    [21]

    Bissessur R, Xu H 2009 Mat. Chem. Phys. 117 335

    [22]

    Zha L Y, Fang L, Peng X Y 2015 Acta Phys. Sin. 64 018710 (in Chinese)[张理勇, 方粮, 彭向阳 2015 64 018710]

    [23]

    Liu K H, Zhang L M, Cao T, Jin C H, Qiu D N, Zhou Q, Zettl A, Yang P D, Louie S G, Wang F 2014 Nat. Commun. 5 4966

    [24]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, Wu J Q 2012 Nano Lett. 12 5576

    [25]

    Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 13

    [26]

    Liu Z, Amani M, Najmaei S, Xu Q, Zou X L, Zhou W, Yu T, Qiu C Y, Birdwell A G, Crowne F J, Vajtai R, Yakobson B I, Xia Z H, Dubey M, Ajayan P M, Lou J 2014 Nat. Commun. 5 5246

  • [1] Liu Wei, Feng Qiu-Ju, Yi Zi-Qi, Yu Chen, Wang Shuo, Wang Yan-Ming, Sui Xue, Liang Hong-Wei. Preparation and ultraviolet detection performance of Cu doped β-Ga2O3 thin films. Acta Physica Sinica, 2023, 72(19): 198503. doi: 10.7498/aps.72.20230971
    [2] Wang Wen-Xun, Ren Yan-Biao, Zhang Shi-Chao, Zhang Lin-Cai, Qi Jing-Bo, He Xiao-Wu. Preparation of three-dimensional graphene foam with controllable defects by closed-environment chemical vapor deposition method and composite electrode electrochemical performance. Acta Physica Sinica, 2020, 69(14): 148101. doi: 10.7498/aps.69.20200454
    [3] Ma Teng-Yu, Li Wan-Jun, He Xian-Wang, Hu Hui, Huang Li-Juan, Zhang Hong, Xiong Yuan-Qiang, Li Hong-Lin, Ye Li-Juan, Kong Chun-Yang. Size Regulation and Photoluminescence Properties of β-Ga2O3 Nanomaterials. Acta Physica Sinica, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [4] Wang Wen-Jie,  Kang Zhi-Lin,  Song Qian,  Wang Xin,  Deng Jia-Jun,  Ding Xun-Lei,  Che Jian-Tao. Effect of layer variation on the electronic structure of stacked MoS2(1-x) Se2x alloy. Acta Physica Sinica, 2018, 67(24): 240601. doi: 10.7498/aps.67.20181494
    [5] Yang Yun-Chang, Wu Bin, Liu Yun-Qi. Synthesis of bilayer graphene via chemical vapor deposition and its optoelectronic devices. Acta Physica Sinica, 2017, 66(21): 218101. doi: 10.7498/aps.66.218101
    [6] Zhou Xiao-Dong, Zhang Shao-Feng, Zhou Si-Hua. Enhancement and quenching of photoluminescence from Au nanoparticles and CdTe quantum dot composite system. Acta Physica Sinica, 2015, 64(16): 167301. doi: 10.7498/aps.64.167301
    [7] Wu Xiao-Ping, Liu Jin-Yang, Lin Li-Mei, Zheng Wei-Feng, Qu Yan, Lai Fa-Chun. Preparation and characteristics of ZnO nanoflowers. Acta Physica Sinica, 2015, 64(20): 207802. doi: 10.7498/aps.64.207802
    [8] Han Lin-Zhi, Zhao Zhan-Xia, Ma Zhong-Quan. Process parameters of large single crystal graphene prepared by chemical vapor deposition. Acta Physica Sinica, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [9] Lu Fang, Zhang Xing-Hua, Lu Zun-Ming, Xu Xue-Wen, Tang Cheng-Chun. The influences of Sr or Ba substitution on the structure and luminescence properties for Ca2.955Si2O7: 0.045Eu2+ phosphor. Acta Physica Sinica, 2012, 61(14): 144209. doi: 10.7498/aps.61.144209
    [10] Fang He, Wang Shun-Li, Li Li-Qun, Li Pei-Gang, Liu Ai-Ping, Tang Wei-Hua. Synthesis and photoluminescence of ZnO and Zn/ZnOnanoparticles prepared by liquid-phase pulsed laser ablation. Acta Physica Sinica, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [11] Lin Tao, Wan Neng, Han Min, Xu Jun, Chen Kun-Ji. Synthesis,structures and luminescence properties of SnO2 nanoparticles. Acta Physica Sinica, 2009, 58(8): 5821-5825. doi: 10.7498/aps.58.5821
    [12] Wu Xiao-Li, Chen Chang-Le, Han Li-An, Luo Bing-Cheng, Gao Guo-Mian, Zhu Jian-Hua. Influence of substrate temperature on the structure and photoluminescence of Mg0.05Zn0.95O thin films grown by pulsed laser deposition. Acta Physica Sinica, 2008, 57(6): 3735-3739. doi: 10.7498/aps.57.3735
    [13] Ma Hai-Lin, Su Qing, Lan Wei, Liu Xue-Qin. Influence of oxygen pressure on the structure and photoluminescence of β-Ga2O3 nano-material prepared by thermal evaporation. Acta Physica Sinica, 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [14] Feng Xian-Jin, Ma Jin, Ge Song-Hua, Ji Feng, Wang Yong-Li, Yang Fan, Ma Hong-Lei. Structural and photoluminescence properties for SnO2:Sb films prepared on Al2O3 substrate. Acta Physica Sinica, 2007, 56(8): 4872-4876. doi: 10.7498/aps.56.4872
    [15] Peng Zhi-Wei, Wang Ling-Ling, Liu Huang-Qing, Huang Wei-Qing, Zou Bing-Suo. Combustion synthesis and photoluminescence of nanocrystalline Gd2O3:Eu3+. Acta Physica Sinica, 2007, 56(2): 1162-1166. doi: 10.7498/aps.56.1162
    [16] Zhu Zhen-Hua, Lei Ming-Kai. Structure and photoluminescence of Er3+-doped Al2O3 composite powders by mixing with SiO2. Acta Physica Sinica, 2006, 55(9): 4956-4961. doi: 10.7498/aps.55.4956
    [17] Wang Yu-Heng, Ma Jin, Ji Feng, Yu Xu-Hu, Zhang Xi-Jian, Ma Hong-Lei. Structural and photoluminescence characters of SnO22:Sb thin films pr epared by rf magnetron sputtering. Acta Physica Sinica, 2005, 54(4): 1731-1735. doi: 10.7498/aps.54.1731
    [18] Ma Zhong-Yuan, Huang Xin-Fan, Zhu Da, Li Wei, Chen Kun-Ji, Feng Duan. Photoluminescence from a-Si:H/SiO2 multilayers fabricated using in situ layer by layer plasma oxidation. Acta Physica Sinica, 2004, 53(8): 2746-2750. doi: 10.7498/aps.53.2746
    [19] Xu Da-Yin, Liu Yan-Ping, He Zhi-Wei, Fang Ze-Bo, Liu Xue-Qin, Wang Yin-Yue. The behavior of photoluminescence from SiC:Tb films deposited on porous silicon substrate. Acta Physica Sinica, 2004, 53(8): 2694-2698. doi: 10.7498/aps.53.2694
    [20] Li Huo-Quan, Ning Zhao-Yuan, Cheng Shan-Hua, Jiang Mei-Fu. Photoluminescence centers and shift of ZnO films deposited by rf magnetron sputtering. Acta Physica Sinica, 2004, 53(3): 867-870. doi: 10.7498/aps.53.867
Metrics
  • Abstract views:  8107
  • PDF Downloads:  425
  • Cited By: 0
Publishing process
  • Received Date:  09 March 2017
  • Accepted Date:  08 May 2017
  • Published Online:  05 July 2017

/

返回文章
返回
Baidu
map