-
High-density (~1010 cm-2) silicon nanowires are grown directly from n-(111) single crystal silicon based on solid-liquid-solid mechanism by using Au-Al films as metallic catalyst. The results indicate that the optimal parameters to realize Si nanowires with high density and uniform distribution are as follows. The thickness of Au-Al film is between 5 and 15 nm, the temperature is 1100℃, and the flow of N2 is 1.5 L/min. The diameters and lengths of the formed Si nanowires are 100 nm and from several micrometers to sereral tens of micrometerss, respectively. Then Eu-doped Si nanowires are studied. The influences of the different lengths of Si nanowires, doping temperature (900-1100℃), and doping time (15-60 min) on the luminescence of Eu3 + are experimentally investigated. The morphologies and microstructures of the SiNWs, the photoluminescence properties and growth crystall orientations are characterized and analyzed by the scanning electron microscopy, the Hitachi F-4600 fluorescence spectrophotometer and X-ray powder diffraction. The results show that the Eu-doped Si nanowires have a stronly red luminescencent with an emission peak position at 619 nm (5D0→7F2) when the doping temperature is 1000℃, the grow time of SiNWs is 30 min, and the optimal excitation wavelength is 395 nm. At the same time, there are four emission bands of 576 nm (5D0→7F0), 596 nm (5D0→7F1), 658 nm (5D0→7F3), and 708 nm (5D0→7F4) that are observed. Compared with the scenario of the silicon substrate, the Eu-doped Si nanowires present strong red light emission. The photoluminescence properties of Eu-doped Si nanowires have potential applications in the lighting and the silicon optoelectronic integration. However, the parameters of Si nanowires such as diameter, density, surface morphology have great influences on the photoluminescence properties of Eu-doped Si nanowires, which are necessary to be further studied.
-
Keywords:
- Si nanowires /
- Eu doped /
- photoluminescence
[1] Li X, Guan L, An J Y, Jin L T, Yang Z P, Yang Y M, Li P L, Fu G S 2011 Chin. Phys. Lett. 28 027805
[2] Liu H L, Hao Y Y, Xu B S 2013 Acta Phys. Sin. 62 108504 (in Chinese) [刘红利, 郝玉英, 许并社 2013 62 108504]
[3] Hazra C, Mahalingam V 2013 RSC Adv. 24 9197
[4] Hasna K, Kumar S S, Komath M, Varma M R, Jayaraj M K, Kumar K R 2013 Phys. Chem. Chem. Phys. 15 8106
[5] Kesavulu C R, Kiran K K, Vijaya N, Lim K S, Jayasankar C K 2013 Mater. Chem. Phys. 141 903
[6] Kumar V, Kumar V, Som S, Duvenhage M M, Ntwaeaborwa O M, Swart H C 2014 Appl. Surf. Sci. 308 419
[7] Morishita H, Delsing A C A, Hintzen H T, Kuwahara H, Itatani K 2014 Key Eng. Mater. 617 149
[8] Bahl S, Lochab S P, Pandey A, Kumar V, Aleynikov V E, Molokanov A G, Kumar P 2014 J. Lumin. 149 176
[9] Zhang N, Ding H, Fu D G 2010 J. Funct. Mater. 3 530 (in Chinese) [张诺, 丁卉, 付德刚 2010 功能材料 3 530]
[10] Li H L, Wang Y H, Zhang W X, Wang X S, Zhao H 2012 Acta Phys. Sin. 61 227802 (in Chinese) [李海玲, 王银海, 张万鑫, 王显盛, 赵慧 2012 61 227802]
[11] Yu H L, Yu X, Xu X H, Jiang T M, Yang P H, Jiao Q, Zhou D C, Qiu J B 2013 Chin. Phys. B 22 098503
[12] Gao Y, Lü Q, Wang Y, Liu Z B 2012 Acta Phys. Sin. 61 077802 (in Chinese) [高杨, 吕强, 汪洋, 刘占波 2012 61 077802]
[13] Jiang D, Hu X Y, Zhang D K, Ma Y P, Zheng X L, Zhang X, Fan J 2009 Chin. J. Lumin. 2 247 (in Chinese) [江东, 胡晓云, 张德恺, 马益平, 郑新亮, 张昕, 樊君 2009 发光学报 2 247]
[14] Costa V C, Lochhead M J, Bay K L 1996 Chem. Mater. 8 783
[15] Sharma P K, Nass R, Schmidt E L 1998 Opt. Mater. 10 161
[16] Selvan S T, Hayakawa T, Nogami M 1999 J. Phys. Chem. B 103 7064
[17] Campostrini R, Carturan G, Ferrari M, Montagna M, Pilla O 1992 J. Mater. Res. 7 745
[18] Werts M H, Jukes R T, Verhoeven J W 2002 Phys. Chem. Chem. Phys. 4 1542
-
[1] Li X, Guan L, An J Y, Jin L T, Yang Z P, Yang Y M, Li P L, Fu G S 2011 Chin. Phys. Lett. 28 027805
[2] Liu H L, Hao Y Y, Xu B S 2013 Acta Phys. Sin. 62 108504 (in Chinese) [刘红利, 郝玉英, 许并社 2013 62 108504]
[3] Hazra C, Mahalingam V 2013 RSC Adv. 24 9197
[4] Hasna K, Kumar S S, Komath M, Varma M R, Jayaraj M K, Kumar K R 2013 Phys. Chem. Chem. Phys. 15 8106
[5] Kesavulu C R, Kiran K K, Vijaya N, Lim K S, Jayasankar C K 2013 Mater. Chem. Phys. 141 903
[6] Kumar V, Kumar V, Som S, Duvenhage M M, Ntwaeaborwa O M, Swart H C 2014 Appl. Surf. Sci. 308 419
[7] Morishita H, Delsing A C A, Hintzen H T, Kuwahara H, Itatani K 2014 Key Eng. Mater. 617 149
[8] Bahl S, Lochab S P, Pandey A, Kumar V, Aleynikov V E, Molokanov A G, Kumar P 2014 J. Lumin. 149 176
[9] Zhang N, Ding H, Fu D G 2010 J. Funct. Mater. 3 530 (in Chinese) [张诺, 丁卉, 付德刚 2010 功能材料 3 530]
[10] Li H L, Wang Y H, Zhang W X, Wang X S, Zhao H 2012 Acta Phys. Sin. 61 227802 (in Chinese) [李海玲, 王银海, 张万鑫, 王显盛, 赵慧 2012 61 227802]
[11] Yu H L, Yu X, Xu X H, Jiang T M, Yang P H, Jiao Q, Zhou D C, Qiu J B 2013 Chin. Phys. B 22 098503
[12] Gao Y, Lü Q, Wang Y, Liu Z B 2012 Acta Phys. Sin. 61 077802 (in Chinese) [高杨, 吕强, 汪洋, 刘占波 2012 61 077802]
[13] Jiang D, Hu X Y, Zhang D K, Ma Y P, Zheng X L, Zhang X, Fan J 2009 Chin. J. Lumin. 2 247 (in Chinese) [江东, 胡晓云, 张德恺, 马益平, 郑新亮, 张昕, 樊君 2009 发光学报 2 247]
[14] Costa V C, Lochhead M J, Bay K L 1996 Chem. Mater. 8 783
[15] Sharma P K, Nass R, Schmidt E L 1998 Opt. Mater. 10 161
[16] Selvan S T, Hayakawa T, Nogami M 1999 J. Phys. Chem. B 103 7064
[17] Campostrini R, Carturan G, Ferrari M, Montagna M, Pilla O 1992 J. Mater. Res. 7 745
[18] Werts M H, Jukes R T, Verhoeven J W 2002 Phys. Chem. Chem. Phys. 4 1542
Catalog
Metrics
- Abstract views: 6503
- PDF Downloads: 154
- Cited By: 0